MFMS: maximal frequent module set mining from multiple human gene expression data sets

Saeed Salem, C. Ozcaglar
{"title":"MFMS: maximal frequent module set mining from multiple human gene expression data sets","authors":"Saeed Salem, C. Ozcaglar","doi":"10.1145/2500863.2500869","DOIUrl":null,"url":null,"abstract":"Advances in genomic technologies have allowed vast amounts of gene expression data to be collected. Protein functional annotation and biological module discovery that are based on a single gene expression data suffers from spurious coexpression. Recent work have focused on integrating multiple independent gene expression data sets. In this paper, we propose a two-step approach for mining maximally frequent collection of highly connected modules from coexpression graphs. We first mine maximal frequent edge-sets and then extract highly connected subgraphs from the edge-induced subgraphs. Experimental results on the collection of modules mined from 52 Human gene expression data sets show that coexpression links that occur together in a significant number of experiments have a modular topological structure. Moreover, GO enrichment analysis shows that the proposed approach discovers biologically significant frequent collections of modules.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"20 1","pages":"51-57"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500863.2500869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Advances in genomic technologies have allowed vast amounts of gene expression data to be collected. Protein functional annotation and biological module discovery that are based on a single gene expression data suffers from spurious coexpression. Recent work have focused on integrating multiple independent gene expression data sets. In this paper, we propose a two-step approach for mining maximally frequent collection of highly connected modules from coexpression graphs. We first mine maximal frequent edge-sets and then extract highly connected subgraphs from the edge-induced subgraphs. Experimental results on the collection of modules mined from 52 Human gene expression data sets show that coexpression links that occur together in a significant number of experiments have a modular topological structure. Moreover, GO enrichment analysis shows that the proposed approach discovers biologically significant frequent collections of modules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFMS:从多个人类基因表达数据集中挖掘最大频繁模块集
基因组技术的进步使得大量的基因表达数据得以收集。基于单个基因表达数据的蛋白质功能注释和生物模块发现存在虚假共表达的问题。最近的工作集中在整合多个独立的基因表达数据集。在本文中,我们提出了一种从共表达式图中挖掘高度连接模块的最大频繁集合的两步方法。首先挖掘最大频繁边集,然后从边诱导子图中提取高连通子图。从52个人类基因表达数据集中挖掘模块的实验结果表明,在大量实验中一起发生的共表达链接具有模块化拓扑结构。此外,氧化石墨烯富集分析表明,该方法发现了具有生物学意义的频繁模块集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replication of SCN5A Associations with Electrocardio-graphic Traits in African Americans from Clinical and Epidemiologic Studies. Drug-target interaction prediction for drug repurposing with probabilistic similarity logic Computational phenotype prediction of ionizing-radiation-resistant bacteria with a multiple-instance learning model Signal detection in genome sequences using complexity based features Heuristic approaches for time-lagged biclustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1