Re-Evaluation of Stress Rupture Factors for Grade 91 Weldments Based on the Extended Database With the Data Collected in Japan

K. Kimura, M. Yaguchi
{"title":"Re-Evaluation of Stress Rupture Factors for Grade 91 Weldments Based on the Extended Database With the Data Collected in Japan","authors":"K. Kimura, M. Yaguchi","doi":"10.1115/pvp2019-93331","DOIUrl":null,"url":null,"abstract":"\n Stress rupture factors and weld strength reduction factors for Grade 91 steel weldments in the codes and literatures have been reviewed. Stress rupture factors for weld metals proposed for Code Case N-47 in the mid 1980’s was defined as a ratio of average rupture strength of the deposited filler metal to the average rupture strength of the base metal. Remarkable drop in creep rupture strength of weldments is significant issue of Grade 91, especially in the low-stress and long-term regime. A premature failure of Grade 91 steel weldments in the long-term, however, is caused by Type IV failure which takes place in the fine grain heat affected zone (FG-HAZ), rather than fracture in the deposited weld metal. The stress rupture factor of the Grade 91 steel, therefore, was based on the creep rupture strength of cross weld test specimens. Creep rupture data of Grade 91 steel weldments reported in the publication of ASME STP-PT-077 was incorporated in the creep database collected in Japan which was used for the previous study. Time and temperature dependent stress rupture factors for Grade 91 steel have been re-evaluated based on the extended database as a ratio of average creep rupture strength of cross weld test specimen to the average creep rupture strength of base metal.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stress rupture factors and weld strength reduction factors for Grade 91 steel weldments in the codes and literatures have been reviewed. Stress rupture factors for weld metals proposed for Code Case N-47 in the mid 1980’s was defined as a ratio of average rupture strength of the deposited filler metal to the average rupture strength of the base metal. Remarkable drop in creep rupture strength of weldments is significant issue of Grade 91, especially in the low-stress and long-term regime. A premature failure of Grade 91 steel weldments in the long-term, however, is caused by Type IV failure which takes place in the fine grain heat affected zone (FG-HAZ), rather than fracture in the deposited weld metal. The stress rupture factor of the Grade 91 steel, therefore, was based on the creep rupture strength of cross weld test specimens. Creep rupture data of Grade 91 steel weldments reported in the publication of ASME STP-PT-077 was incorporated in the creep database collected in Japan which was used for the previous study. Time and temperature dependent stress rupture factors for Grade 91 steel have been re-evaluated based on the extended database as a ratio of average creep rupture strength of cross weld test specimen to the average creep rupture strength of base metal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展数据库的91级焊接件应力破裂系数的再评价
对规范和文献中91级钢焊接件的应力断裂系数和焊接强度折减系数进行了综述。20世纪80年代中期,在Code Case N-47中提出了焊缝金属的应力断裂系数,定义为沉积的填充金属的平均断裂强度与母材的平均断裂强度之比。焊接件蠕变断裂强度的显著下降是91级的重要问题,特别是在低应力和长期状态下。然而,从长期来看,91级钢焊接件的过早失效是由IV型失效引起的,这种失效发生在细晶热影响区(FG-HAZ),而不是在沉积的焊接金属中断裂。因此,91级钢的应力断裂系数基于交叉焊试件的蠕变断裂强度。ASME STP-PT-077出版物中报道的91级钢焊接件蠕变断裂数据被纳入日本收集的蠕变数据库,该数据库用于先前的研究。基于扩展的数据库,重新评估了91级钢与时间和温度相关的应力破裂系数,即交叉焊接试样的平均蠕变断裂强度与母材的平均蠕变断裂强度之比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the Resistance of Austenitic Stainless Steel Welds to Hydrogen Embrittlement Improvement of Low-Temperature Toughness in Weld Metal Made of 9Cr-1Mo-V Steel by GTAW Method Load Normalization Method Accounting for Elastic and Elastic-Plastic Crack Growth Crack Growth Rate Testing and Large Plate Demonstration Under Chloride-Induced Stress Corrosion Cracking Conditions in Stainless Steel Canisters for Storage of Spent Nuclear Fuel An Efficient Modelling Approach for Predicting Residual Stress in Power-Beam Welds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1