Combined Fracture, Delamination Risk and Fatigue Evaluation of Advanced Microelectronics Applications towards RSM/DOE Concepts

J. Auersperg, R. Dudek, B. Michel
{"title":"Combined Fracture, Delamination Risk and Fatigue Evaluation of Advanced Microelectronics Applications towards RSM/DOE Concepts","authors":"J. Auersperg, R. Dudek, B. Michel","doi":"10.1109/ESIME.2006.1644042","DOIUrl":null,"url":null,"abstract":"Microelectronic assemblies are basically compounds of several high precision materials with quite different Young's moduli and thermal expansion coefficients (CTE). Additionally, various kinds of inhomogeneity, residual stresses generated by several steps of the manufacturing process and extreme thermal environmental conditions contribute to interface delamination, chip cracking and fatigue of solder interconnects. For that reason, numerical investigations by means of nonlinear FEA together with conventional strength hypotheses are frequently used for design optimizations and sensitivity analyses. So, design studies on the basis of parameterized FE-models and DOE/RSM-approaches help to optimize electronic components at early phases of the product development process. But, this methodology typically bases on classical stress/strain strength evaluations or/and life time estimations of solder interconnects using modified Coffin-Manson approaches, whereas delamination or bulk fracture mechanisms usually remain unconsidered. By means of a representative microelectronics assembly this contribution is going to figure out and discuss ways and challenges of using numerical fatigue evaluation and fracture mechanics approaches in connection with parameterized finite element modeling based DOE/RSM-concepts. That is, the evaluation of mixed mode interface delamination phenomena utilizing the VCCT-methodology, classical strength hypotheses along with fracture mechanics approaches and modified Coffin-Manson thermal fatigue estimation of solder joints will be simultaneously applied within a multi-objective optimization towards a thermo-mechanical reliable design","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"163 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1644042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Microelectronic assemblies are basically compounds of several high precision materials with quite different Young's moduli and thermal expansion coefficients (CTE). Additionally, various kinds of inhomogeneity, residual stresses generated by several steps of the manufacturing process and extreme thermal environmental conditions contribute to interface delamination, chip cracking and fatigue of solder interconnects. For that reason, numerical investigations by means of nonlinear FEA together with conventional strength hypotheses are frequently used for design optimizations and sensitivity analyses. So, design studies on the basis of parameterized FE-models and DOE/RSM-approaches help to optimize electronic components at early phases of the product development process. But, this methodology typically bases on classical stress/strain strength evaluations or/and life time estimations of solder interconnects using modified Coffin-Manson approaches, whereas delamination or bulk fracture mechanisms usually remain unconsidered. By means of a representative microelectronics assembly this contribution is going to figure out and discuss ways and challenges of using numerical fatigue evaluation and fracture mechanics approaches in connection with parameterized finite element modeling based DOE/RSM-concepts. That is, the evaluation of mixed mode interface delamination phenomena utilizing the VCCT-methodology, classical strength hypotheses along with fracture mechanics approaches and modified Coffin-Manson thermal fatigue estimation of solder joints will be simultaneously applied within a multi-objective optimization towards a thermo-mechanical reliable design
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
断裂、分层风险和疲劳综合评估在RSM/DOE概念中的先进微电子应用
微电子组件基本上是几种具有不同杨氏模量和热膨胀系数(CTE)的高精度材料的化合物。此外,各种不均匀性、制造过程中多个步骤产生的残余应力以及极端的热环境条件都是导致焊料互连界面分层、芯片开裂和疲劳的原因。因此,采用非线性有限元法和常规强度假设的数值研究方法经常用于设计优化和灵敏度分析。因此,基于参数化fe模型和DOE/ rsm方法的设计研究有助于在产品开发过程的早期阶段优化电子元件。但是,这种方法通常基于经典的应力/应变强度评估或/和使用改进的Coffin-Manson方法估计焊料互连的寿命,而分层或整体断裂机制通常未被考虑。通过一个具有代表性的微电子装配,本文将找出并讨论使用数值疲劳评估和断裂力学方法与基于DOE/ rsm概念的参数化有限元建模的方法和挑战。也就是说,利用vcct方法评估混合模式界面分层现象,经典强度假设以及断裂力学方法和改进的Coffin-Manson焊点热疲劳估计将同时应用于多目标优化,以实现热-机械可靠设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
145
期刊最新文献
Front Matter: Volume 12072 Front Matter: Volume 12073 Multi-Energy Domain Modeling of Microdevices: Virtual Prototyping by Predictive Simulation A Monte Carlo Investigation of Nanocrystal Memory Reliability Difficulties on the estimation of the thermal structure function from noisy thermal impedance transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1