Fuzzy Automatic Control of the Pyrolysis Process for the Municipal Solid Waste of Variable Composition

O. Kozlov, Y. Kondratenko, Hanna Lysiuk, Viktoriia Kryvda, O. Maksymova
{"title":"Fuzzy Automatic Control of the Pyrolysis Process for the Municipal Solid Waste of Variable Composition","authors":"O. Kozlov, Y. Kondratenko, Hanna Lysiuk, Viktoriia Kryvda, O. Maksymova","doi":"10.14313/jamris/1-2022/9","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to the issues of the fuzzy automatic control of the pyrolysis process of municipal solid waste (MSW) of variable composition and moisture content. The fuzzy control method that is developed and studied makes it possible to carry out the proper automatic control of a pyrolysis plant with the determination of the optimal ratio of air/MSW for various types of waste and with different moisture content values to ensure high efficiency of the MSW disposal process. The effectiveness study of the proposed fuzzy control method is performed in this paper on a specific example, in particular, when automating the pyrolysis plant for MSW disposal with a reactor volume of 250 liters. The obtained simulation results confirm the high efficiency of the developed method, as well as the feasibility of its use for designing automatic control systems of various pyrolysis plants that operate under conditions of changes in the composition and moisture content of input waste.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"39 1","pages":"83 - 94"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/1-2022/9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper is devoted to the issues of the fuzzy automatic control of the pyrolysis process of municipal solid waste (MSW) of variable composition and moisture content. The fuzzy control method that is developed and studied makes it possible to carry out the proper automatic control of a pyrolysis plant with the determination of the optimal ratio of air/MSW for various types of waste and with different moisture content values to ensure high efficiency of the MSW disposal process. The effectiveness study of the proposed fuzzy control method is performed in this paper on a specific example, in particular, when automating the pyrolysis plant for MSW disposal with a reactor volume of 250 liters. The obtained simulation results confirm the high efficiency of the developed method, as well as the feasibility of its use for designing automatic control systems of various pyrolysis plants that operate under conditions of changes in the composition and moisture content of input waste.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变组分城市生活垃圾热解过程的模糊自动控制
摘要本文研究了变组分、变含水率城市生活垃圾热解过程的模糊自动控制问题。所开发和研究的模糊控制方法,可以对热解装置进行适当的自动控制,确定不同类型垃圾和不同含水率值的空气/生活垃圾的最佳比例,保证生活垃圾处理过程的高效率。本文以250 l反应器处理生活垃圾热解装置自动化为例,对所提出的模糊控制方法的有效性进行了研究。仿真结果证实了所提方法的高效率,以及将其用于设计各种热解装置在输入废物组成和含水率变化条件下运行的自动控制系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1