Nanoscale morphology of graphene on different substrates

Mario Lanza, Y. Wang, Huiling Duan, M. Porti, M. Nafría, A. Bayerl, X. Aymerich, T. Gao, Zhongfan Liu, Yudao Zhang, H. Liang, Guangyin Jing
{"title":"Nanoscale morphology of graphene on different substrates","authors":"Mario Lanza, Y. Wang, Huiling Duan, M. Porti, M. Nafría, A. Bayerl, X. Aymerich, T. Gao, Zhongfan Liu, Yudao Zhang, H. Liang, Guangyin Jing","doi":"10.1109/CDE.2013.6481394","DOIUrl":null,"url":null,"abstract":"Graphene layers can be used as the conductive channel in metal oxide semiconductor field effect transistors, metallic electrodes in capacitors, etc. However, when graphene is grown by chemical vapor deposition (CVD), substrate-induced corrugations and strain-related wrinkles formed on the graphene layer impoverish the properties of these devices by lowering the conductance and increasing their variability. In this work, different nanoscale experimental techniques have been used to investigate the morphology of as-grown and transferred graphene sheets on different substrates. We show that while the compressive strain (from the growth process) in the graphene sheet on flat substrates is minimized by generating wrinkles, on rough substrates it can be minimized by improving the graphene-substrate adhesion, leading to lower densities of wrinkles. This method allows the design of wrinkle-free graphene based devices.","PeriodicalId":6614,"journal":{"name":"2013 Spanish Conference on Electron Devices","volume":"24 1","pages":"269-272"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Spanish Conference on Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDE.2013.6481394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene layers can be used as the conductive channel in metal oxide semiconductor field effect transistors, metallic electrodes in capacitors, etc. However, when graphene is grown by chemical vapor deposition (CVD), substrate-induced corrugations and strain-related wrinkles formed on the graphene layer impoverish the properties of these devices by lowering the conductance and increasing their variability. In this work, different nanoscale experimental techniques have been used to investigate the morphology of as-grown and transferred graphene sheets on different substrates. We show that while the compressive strain (from the growth process) in the graphene sheet on flat substrates is minimized by generating wrinkles, on rough substrates it can be minimized by improving the graphene-substrate adhesion, leading to lower densities of wrinkles. This method allows the design of wrinkle-free graphene based devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯在不同衬底上的纳米形貌
石墨烯层可用作金属氧化物半导体场效应晶体管的导电通道、电容器的金属电极等。然而,当石墨烯通过化学气相沉积(CVD)生长时,在石墨烯层上形成的衬底诱导波纹和应变相关皱纹会降低这些器件的电导并增加其可变性,从而使这些器件的性能变得贫瘠。在这项工作中,使用了不同的纳米尺度实验技术来研究生长和转移在不同衬底上的石墨烯片的形貌。我们的研究表明,平坦基底上的石墨烯片的压缩应变(来自生长过程)可以通过产生皱纹来最小化,而在粗糙基底上,可以通过改善石墨烯与基底的粘附性来最小化压缩应变,从而降低皱纹密度。这种方法允许设计无褶皱的石墨烯基器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMOS VCO design optimization using reliable 3D electromagnetic inductor models Gadolinium scandate by high pressure sputtering as a high-k dielectric Macroporous silicon microreactor for the preferential oxidation of CO Trends in crystalline silicon growth for low cost and efficient photovoltaic cells Nanohole particle filling by electrospray
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1