A new approach for pain event detection in video

Junkai Chen, Z. Chi, Hong Fu
{"title":"A new approach for pain event detection in video","authors":"Junkai Chen, Z. Chi, Hong Fu","doi":"10.1109/ACII.2015.7344579","DOIUrl":null,"url":null,"abstract":"A new approach for pain event detection in video is presented in this paper. Different from some previous works which focused on frame-based detection, we target in detecting pain events at video level. In this work, we explore the spatial information of video frames and dynamic textures of video sequences, and propose two different types of features. HOG of fiducial points (P-HOG) is employed to extract spatial features from video frames and HOG from Three Orthogonal Planes (HOG-TOP) is used to represent dynamic textures of video subsequences. After that, we apply max pooling to represent a video sequence as a global feature vector. Multiple Kernel Learning (MKL) is utilized to find an optimal fusion of the two types of features. And an SVM with multiple kernels is trained to perform the final classification. We conduct our experiments on the UNBC-McMaster Shoulder Pain dataset and achieve promising results, showing the effectiveness of our approach.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"71 1","pages":"250-254"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new approach for pain event detection in video is presented in this paper. Different from some previous works which focused on frame-based detection, we target in detecting pain events at video level. In this work, we explore the spatial information of video frames and dynamic textures of video sequences, and propose two different types of features. HOG of fiducial points (P-HOG) is employed to extract spatial features from video frames and HOG from Three Orthogonal Planes (HOG-TOP) is used to represent dynamic textures of video subsequences. After that, we apply max pooling to represent a video sequence as a global feature vector. Multiple Kernel Learning (MKL) is utilized to find an optimal fusion of the two types of features. And an SVM with multiple kernels is trained to perform the final classification. We conduct our experiments on the UNBC-McMaster Shoulder Pain dataset and achieve promising results, showing the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频中疼痛事件检测的新方法
提出了一种新的视频疼痛事件检测方法。不同于以往的基于帧的检测,我们的目标是在视频级别检测疼痛事件。在这项工作中,我们探索了视频帧的空间信息和视频序列的动态纹理,并提出了两种不同类型的特征。利用基准点HOG (P-HOG)提取视频帧的空间特征,利用三正交平面HOG (HOG- top)表示视频子序列的动态纹理。然后,我们应用最大池化将视频序列表示为全局特征向量。利用多核学习(Multiple Kernel Learning, MKL)来寻找两类特征的最优融合。并训练一个多核支持向量机进行最终分类。我们在UNBC-McMaster肩膀疼痛数据集上进行了实验,并取得了令人鼓舞的结果,显示了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1