SOFT ROBOT POSITIONING USING ARTIFICIAL NEURAL NETWORK

Marko Kovandzic, V. Nikolic, M. Simonović, I. Ćirić, Abdulathim Al-Noori
{"title":"SOFT ROBOT POSITIONING USING ARTIFICIAL NEURAL NETWORK","authors":"Marko Kovandzic, V. Nikolic, M. Simonović, I. Ćirić, Abdulathim Al-Noori","doi":"10.22190/FUACR1901019K","DOIUrl":null,"url":null,"abstract":"The experiment investigated the performance of an artificial neural network in solving the inverse kinematic problem of a soft robot. For this purpose, a simple soft robot was designed of building blocks, stringed on three rubber hoses, and an actuating system, to provide the hydraulic pressure. An axial extending of a hose, while the others are in the relaxed state, results in bending of the robot. The network was employed, as a black box, to approximate the behavior of the system. In accordance with the purpose, the input consisted of the desired spatial coordinates and the output of the step motor angular displacements. The network was trained and tested using records collected at 200 randomly chosen robot positions. The relative testing error of positioning, about 5%, confirmed a predictable robot behavior. The solution proposed is competitive in terms of simplicity, safety and price of realization. The experiment provided basics for the future research of the design of modular soft robots.","PeriodicalId":93645,"journal":{"name":"Facta universitatis. Series, Mechanics, automatic control and robotics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta universitatis. Series, Mechanics, automatic control and robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUACR1901019K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The experiment investigated the performance of an artificial neural network in solving the inverse kinematic problem of a soft robot. For this purpose, a simple soft robot was designed of building blocks, stringed on three rubber hoses, and an actuating system, to provide the hydraulic pressure. An axial extending of a hose, while the others are in the relaxed state, results in bending of the robot. The network was employed, as a black box, to approximate the behavior of the system. In accordance with the purpose, the input consisted of the desired spatial coordinates and the output of the step motor angular displacements. The network was trained and tested using records collected at 200 randomly chosen robot positions. The relative testing error of positioning, about 5%, confirmed a predictable robot behavior. The solution proposed is competitive in terms of simplicity, safety and price of realization. The experiment provided basics for the future research of the design of modular soft robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的软机器人定位
实验研究了人工神经网络在求解软体机器人运动学逆问题中的性能。为此,设计了一个简单的软体机器人,由三根橡胶软管和一个驱动系统组成,以提供液压。当软管轴向延伸时,其他软管处于放松状态,导致机器人弯曲。该网络作为一个黑盒来近似系统的行为。根据目的,输入由期望的空间坐标和输出的步进电机角位移组成。该网络使用在200个随机选择的机器人位置收集的记录进行训练和测试。定位的相对测试误差约为5%,证实了机器人的行为是可预测的。所提出的解决方案在简单性、安全性和实现价格方面具有竞争力。该实验为今后模块化软机器人的设计研究提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS FOR ROAD TYPE CLASSIFICATION LINEAR RECURRENCE RELATONS AND ORDINARY GENERATING FUNCTIONS APPLIED ON MODELING PROCESSES IN CONTROL THEORY PERFORMANCE ANALYSIS OF MRC-SC MACRODIVERSITY RECEPTION OVER GENERALIZED FADING CHANNELS NOVEL EXPONENTIAL TYPE APPROXIMATIONS OF THE Q-FUNCTION ONE-BIT QUANTIZER PARAMETRIZATION FOR ARBITRARY LAPLACIAN SOURCES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1