Image-Based Fractographic Pattern Recognition With Cluster Analysis

Shenghan Guo, P. Paradise, Nicole Van Handel, D. Bhate
{"title":"Image-Based Fractographic Pattern Recognition With Cluster Analysis","authors":"Shenghan Guo, P. Paradise, Nicole Van Handel, D. Bhate","doi":"10.1115/msec2022-82773","DOIUrl":null,"url":null,"abstract":"\n Scanning Electron Microscopy (SEM) is traditionally leveraged to image fracture surfaces and generate information for analysis. Conventionally, experts identify patterns of interest in SEM images and link them to fracture phenomena based on knowledge and experience. Such practice has substantial limitations. It relies on expert opinions for decision-making, which poses barriers for practitioners without relevant background; manual inspection must be done for individual SEM images, thus time-consuming and inapt for industrial automation. There is a genuine demand for a fast, automatic method for fractographic pattern recognition. Targeting the problem, this study proposes a two-stage data-driven approach based on clustering. In offline analysis (Stage 1), a clustering algorithm identifies the generic fractographic patterns on part. Each pattern corresponds to a cluster. Expert evaluation of the part’s crack status is leveraged to map individual patterns (clusters) to a crack type. In in-situ monitoring (Stage 2), SEM images of new parts are matched to the clusters from stage 1, which reveals the generic patterns on the part and indicates the potential crack status. The proposed approach enables automatic fractographic analysis without experts. It is demonstrated to be effective on real SEM images of additively manufactured Inconel-718 specimens subjected to high cycle fatigue.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-82773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning Electron Microscopy (SEM) is traditionally leveraged to image fracture surfaces and generate information for analysis. Conventionally, experts identify patterns of interest in SEM images and link them to fracture phenomena based on knowledge and experience. Such practice has substantial limitations. It relies on expert opinions for decision-making, which poses barriers for practitioners without relevant background; manual inspection must be done for individual SEM images, thus time-consuming and inapt for industrial automation. There is a genuine demand for a fast, automatic method for fractographic pattern recognition. Targeting the problem, this study proposes a two-stage data-driven approach based on clustering. In offline analysis (Stage 1), a clustering algorithm identifies the generic fractographic patterns on part. Each pattern corresponds to a cluster. Expert evaluation of the part’s crack status is leveraged to map individual patterns (clusters) to a crack type. In in-situ monitoring (Stage 2), SEM images of new parts are matched to the clusters from stage 1, which reveals the generic patterns on the part and indicates the potential crack status. The proposed approach enables automatic fractographic analysis without experts. It is demonstrated to be effective on real SEM images of additively manufactured Inconel-718 specimens subjected to high cycle fatigue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的断口模式识别与聚类分析
传统上利用扫描电子显微镜(SEM)对断裂表面进行成像并生成分析信息。传统上,专家们在扫描电镜图像中识别出感兴趣的模式,并根据知识和经验将它们与断裂现象联系起来。这种做法有很大的局限性。它依赖于专家意见进行决策,这对没有相关背景的从业者构成了障碍;必须对单个SEM图像进行人工检查,因此耗时且不适合工业自动化。人们迫切需要一种快速、自动的断口模式识别方法。针对这一问题,本文提出了一种基于聚类的两阶段数据驱动方法。在离线分析(阶段1)中,聚类算法识别零件上的一般断口模式。每个模式对应一个集群。专家对零件的裂纹状态进行评估,以将单个模式(簇)映射到裂纹类型。在现场监测(第二阶段)中,新零件的SEM图像与第一阶段的簇相匹配,揭示了零件上的一般模式,并指出了潜在的裂纹状态。所提出的方法可以在没有专家的情况下实现自动断口分析。增材制造的Inconel-718高周疲劳试样的真实SEM图像证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and sensory properties of burgers affected by different dry ageing time of beef neck Inovacija proizvoda HRZZ projekta “Inovativni funkcionalni proizvodi od janjećeg mesa“ Bioaktivni peptidi u pršutima Samodostatnost u proizvodnji svinjskog mesa u Republici Hrvatskoj Policiklički aromatski ugljikovodici (PAH) u tradicionalno dimljenim mesnim proizvodima
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1