Evaluation of machine learning algorithms for image quality assessment

Ghislain Takam Tchendjou, Rshdee Alhakim, E. Simeu, F. Lebowsky
{"title":"Evaluation of machine learning algorithms for image quality assessment","authors":"Ghislain Takam Tchendjou, Rshdee Alhakim, E. Simeu, F. Lebowsky","doi":"10.1109/IOLTS.2016.7604697","DOIUrl":null,"url":null,"abstract":"In this article, we apply different machine learning (ML) techniques for building objective models, that permit to automatically assess the image quality in agreement with human visual perception. The six ML methods proposed are discriminant analysis, k-nearest neighbors, artificial neural network, non-linear regression, decision tree and fuzzy logic. Both the stability and the robustness of designed models are evaluated by using Monte-Carlo cross-validation approach (MCCV). The simulation results demonstrate that fuzzy logic model provides the best prediction accuracy.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"77 1","pages":"193-194"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this article, we apply different machine learning (ML) techniques for building objective models, that permit to automatically assess the image quality in agreement with human visual perception. The six ML methods proposed are discriminant analysis, k-nearest neighbors, artificial neural network, non-linear regression, decision tree and fuzzy logic. Both the stability and the robustness of designed models are evaluated by using Monte-Carlo cross-validation approach (MCCV). The simulation results demonstrate that fuzzy logic model provides the best prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于图像质量评估的机器学习算法
在本文中,我们应用不同的机器学习(ML)技术来构建客观模型,允许自动评估与人类视觉感知一致的图像质量。提出了判别分析、k近邻、人工神经网络、非线性回归、决策树和模糊逻辑等六种机器学习方法。采用蒙特卡罗交叉验证方法对设计模型的稳定性和鲁棒性进行了评价。仿真结果表明,模糊逻辑模型具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keytone: Silent Data Corruptions at Scale Welcome Field profiling & monitoring of payload transistors in FPGAs Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation NBTI aging evaluation of PUF-based differential architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1