{"title":"Surface Engineering - Application on Wear","authors":"Francisco Martinez Pérez","doi":"10.32629/jbt.v5i1.1197","DOIUrl":null,"url":null,"abstract":"In this article, engineering surface application is introduced as a new concept. The basis of this concept is the understanding that different surface technologies are applied to the design of existing engineering components, but, it is necessary to know that surface engineering would cover only part of the design of the component, the surface treatment to be applied should also be known. This is because, surfaces with a high index of hardening due to deformation, are resistant to severe adhesive wear, abrasion and pickling, but they should not have the same resistance to other types of wear. It means that a correlation must be established between the surface quality and the pickling resistance. In this article, it is shown that the use of high compatibility metallic materials is preferred and that a correlation can be established between the surface quality and the pickling resistance by a simple number. The selection of materials and methods of obtaining the engineering surfaces for tribological applications, depends to a large extent on the mechanism and particular type of predominant wear. Therefore, the selection of materials resistant to wear will be analyzed depending on the type of wear in question.","PeriodicalId":38108,"journal":{"name":"International Journal of Sustainable Building Technology and Urban Development","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Building Technology and Urban Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jbt.v5i1.1197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, engineering surface application is introduced as a new concept. The basis of this concept is the understanding that different surface technologies are applied to the design of existing engineering components, but, it is necessary to know that surface engineering would cover only part of the design of the component, the surface treatment to be applied should also be known. This is because, surfaces with a high index of hardening due to deformation, are resistant to severe adhesive wear, abrasion and pickling, but they should not have the same resistance to other types of wear. It means that a correlation must be established between the surface quality and the pickling resistance. In this article, it is shown that the use of high compatibility metallic materials is preferred and that a correlation can be established between the surface quality and the pickling resistance by a simple number. The selection of materials and methods of obtaining the engineering surfaces for tribological applications, depends to a large extent on the mechanism and particular type of predominant wear. Therefore, the selection of materials resistant to wear will be analyzed depending on the type of wear in question.
期刊介绍:
The International Journal of Sustainable Building Technology and Urban Development is the official publication of the Sustainable Building Research Center and serves as a resource to professionals and academics within the architecture and sustainability community. The International Journal of Sustainable Building Technology and Urban Development aims to support its academic community by disseminating studies on sustainable building technology, focusing on issues related to sustainable approaches in the construction industry to reduce waste and mass consumption, integration of advanced architectural technologies and environmentalism, sustainable building maintenance, life cycle cost (LCC), social issues, education and public policies relating to urban development and architecture .