Aminur Rahman, H. Rasid, Md. Isahak Ali, Nymul Yeachin, M. Alam, K. S. Hossain, M. A. Kafi
{"title":"Facile Synthesis and Application of Ag-NPs for Controlling Antibiotic-ResistantPseudomonas spp. and Bacillus spp. in a Poultry Farm Environment","authors":"Aminur Rahman, H. Rasid, Md. Isahak Ali, Nymul Yeachin, M. Alam, K. S. Hossain, M. A. Kafi","doi":"10.1155/2023/6260066","DOIUrl":null,"url":null,"abstract":"This study synthesized silver nanoparticles (Ag-NPs) using silver nitrate (AgNO3) as the ion source and sodium tripolyphosphate (STPP) as reducing as well as capping agents. The synthesized Ag-NPs were confirmed initially using Ag-NPs specific λmax at 410 nm with UV-Vis spectrophotometry and homogenously distributed, 100–300 nm size, and round-shaped particles were realized through atomic force microscopy (AFM) and transmission electron microscopy (TEM) image analysis. The various reaction condition-based studies revealed 0.01 M AgNO3 yields maximum particle after 4 h reduction with 1% STPP. Bacillus spp. (n = 23/90) and Pseudomonas spp. (n = 26/90) were isolated from three different poultry farms for evaluating the antibacterial activity of Ag-NPs. Among the PCR confirmed isolates, 52% (12/23) Bacillus spp. were resistant to ten antibiotics and 65% (17/26) Pseudomonas spp. were resistant to eleven antibiotics. The representative resistant isolates were subjected to antibacterial evaluation of synthesized Ag-NPs following the well diffusion method, revealing the maximum sensitive zone of inhibition 19 ± 0.2 mm against Bacillus spp. and 17 ± 0.38 mm against Pseudomonas spp. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of Ag-NPs were 2.1 μg/ml and 8.4 μg/ml, respectively, for broad-spectrum application. Finally, the biocompatibility was determined by observing the viability of Ag-NP-treated BHK-21 cell through trypan blue-based exclusion assay revealing nonsignificant decreased of cell viability ≤2MIC doses. Thus, the synthesized Ag-NPs were proven as biocompatible and sensitive to both Gram-positive and Gram-negative bacteria of the poultry farm environmental samples.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6260066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
This study synthesized silver nanoparticles (Ag-NPs) using silver nitrate (AgNO3) as the ion source and sodium tripolyphosphate (STPP) as reducing as well as capping agents. The synthesized Ag-NPs were confirmed initially using Ag-NPs specific λmax at 410 nm with UV-Vis spectrophotometry and homogenously distributed, 100–300 nm size, and round-shaped particles were realized through atomic force microscopy (AFM) and transmission electron microscopy (TEM) image analysis. The various reaction condition-based studies revealed 0.01 M AgNO3 yields maximum particle after 4 h reduction with 1% STPP. Bacillus spp. (n = 23/90) and Pseudomonas spp. (n = 26/90) were isolated from three different poultry farms for evaluating the antibacterial activity of Ag-NPs. Among the PCR confirmed isolates, 52% (12/23) Bacillus spp. were resistant to ten antibiotics and 65% (17/26) Pseudomonas spp. were resistant to eleven antibiotics. The representative resistant isolates were subjected to antibacterial evaluation of synthesized Ag-NPs following the well diffusion method, revealing the maximum sensitive zone of inhibition 19 ± 0.2 mm against Bacillus spp. and 17 ± 0.38 mm against Pseudomonas spp. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of Ag-NPs were 2.1 μg/ml and 8.4 μg/ml, respectively, for broad-spectrum application. Finally, the biocompatibility was determined by observing the viability of Ag-NP-treated BHK-21 cell through trypan blue-based exclusion assay revealing nonsignificant decreased of cell viability ≤2MIC doses. Thus, the synthesized Ag-NPs were proven as biocompatible and sensitive to both Gram-positive and Gram-negative bacteria of the poultry farm environmental samples.