Computational Analyses of Cavitating Flows in Cryogenic Liquid Hydrogen

Sun Tiezhi, Wei Ying-jie, Wang Cong
{"title":"Computational Analyses of Cavitating Flows in Cryogenic Liquid Hydrogen","authors":"Sun Tiezhi, Wei Ying-jie, Wang Cong","doi":"10.11916/J.ISSN.1005-9113.2016.05.001","DOIUrl":null,"url":null,"abstract":"The objective of this study is to analyze the fundamental characteristics and the thermodynamic effects of cavitating flows in liquid hydrogen. For this purpose, numerical simulation of cavitating flows are conducted over a three dimensional hydrofoil in liquid hydrogen. Firstly, the efficiency of this computational methodology is validated through comparing the simulation results with the experimental measurements of pressure and temperature. Secondly, after analysing the cavitating flows in liquid hydrogen and water, the characteristics under cryogenic conditions are highlighted. The results show that the thermodynamic effects play a significant role in the cavity structure and the mass transfer, the dimensionless mass transfer rate of liquid hydrogen is much larger, and the peak value is about ninety times as high as water at room temperature. Furthermore, a parametric study of cavitating flows on hydrofoil is conducted by considering different cavitation number and dimensionless thermodynamic coefficient. The obtained results provide an insight into the thermodynamic effect on the cavitating flows.","PeriodicalId":39923,"journal":{"name":"Journal of Harbin Institute of Technology (New Series)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Harbin Institute of Technology (New Series)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11916/J.ISSN.1005-9113.2016.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this study is to analyze the fundamental characteristics and the thermodynamic effects of cavitating flows in liquid hydrogen. For this purpose, numerical simulation of cavitating flows are conducted over a three dimensional hydrofoil in liquid hydrogen. Firstly, the efficiency of this computational methodology is validated through comparing the simulation results with the experimental measurements of pressure and temperature. Secondly, after analysing the cavitating flows in liquid hydrogen and water, the characteristics under cryogenic conditions are highlighted. The results show that the thermodynamic effects play a significant role in the cavity structure and the mass transfer, the dimensionless mass transfer rate of liquid hydrogen is much larger, and the peak value is about ninety times as high as water at room temperature. Furthermore, a parametric study of cavitating flows on hydrofoil is conducted by considering different cavitation number and dimensionless thermodynamic coefficient. The obtained results provide an insight into the thermodynamic effect on the cavitating flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温液氢中空化流动的计算分析
本研究的目的是分析液氢中空化流动的基本特征和热力学效应。为此,对液氢中三维水翼的空化流动进行了数值模拟。首先,通过将仿真结果与压力和温度的实验测量结果进行比较,验证了该计算方法的有效性。其次,通过对液态氢和液态水中空化流动的分析,强调了液态氢和液态水在低温条件下的空化流动特征。结果表明,热力学效应对空腔结构和传质有显著影响,液氢的无因次传质速率要大得多,在室温下的峰值约为水的90倍。在此基础上,考虑不同空化数和无因次热力系数,对水翼上的空化流动进行了参数化研究。所得结果对空化流动的热力学影响提供了一个深入的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
2515
期刊最新文献
Numerical simulation of nitrogen and phosphorus vertical transportation in subsurface drainage area Design of Sixth-Order Lowpass Elliptic Switched-Capacitor Filter Model-free Adaptive Control for Spacecraft Attitude Type Synthesis of fully-Decoupled 2T2R Parallel Mechanisms Based on Driven-Chain Principle Isolation, Identification of Bacillus Thuringiensis/ Cereus and Its Enhancement on Protein Wastewater Treatment by Rhodobacter Sphaeroides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1