S. Ahmadyan, Jayanand Asok Kumar, Shobha Vasudevan
{"title":"Runtime verification of nonlinear analog circuits using incremental Time-augmented RRT algorithm","authors":"S. Ahmadyan, Jayanand Asok Kumar, Shobha Vasudevan","doi":"10.7873/DATE.2013.019","DOIUrl":null,"url":null,"abstract":"Because of complexity of analog circuits, their verification presents many challenges. We propose a runtime verification algorithm to verify design properties of nonlinear analog circuits. Our algorithm is based on performing exploratory simulations in the state-time space using the Time-augmented Rapidly Exploring Random Tree (TRRT) algorithm. The proposed runtime verification methodology consists of i) incremental construction of the TRRT to explore the state-time space and ii) use of an incremental online monitoring algorithm to check whether or not the incremented TRRT satisfies or violates specification properties at each iteration. In comparison to the Monte Carlo simulations, for providing the same state-space coverage, we utilize a logarithmic order of memory and time.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"25 1","pages":"21-26"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Because of complexity of analog circuits, their verification presents many challenges. We propose a runtime verification algorithm to verify design properties of nonlinear analog circuits. Our algorithm is based on performing exploratory simulations in the state-time space using the Time-augmented Rapidly Exploring Random Tree (TRRT) algorithm. The proposed runtime verification methodology consists of i) incremental construction of the TRRT to explore the state-time space and ii) use of an incremental online monitoring algorithm to check whether or not the incremented TRRT satisfies or violates specification properties at each iteration. In comparison to the Monte Carlo simulations, for providing the same state-space coverage, we utilize a logarithmic order of memory and time.