ASYMPTOTIC FORMULAE FOR THE ACOUSTIC SELF-IMPEDANCE OF SIMPLY-SUPPORTED AND SIMPLY SUPPORTED-CLAMPED ANNULAR PLATES

W. Rdzanek, W. Rdzanek
{"title":"ASYMPTOTIC FORMULAE FOR THE ACOUSTIC SELF-IMPEDANCE OF SIMPLY-SUPPORTED AND SIMPLY SUPPORTED-CLAMPED ANNULAR PLATES","authors":"W. Rdzanek, W. Rdzanek","doi":"10.7494/MECH.2014.33.1.17","DOIUrl":null,"url":null,"abstract":"This study focuses on the sound radiation of a vibrating flat annular plate. The rigorous theoretical considerations deal with sometime-harmonic and axisymmetric vibrations. Three different boundary configurations are considered, i.e. one of the plate’s edges is simply supported and the other one is clamped or also is simply supported. The active and reactive self-impedance of the system are presented in their Hankel’s representations, valid within the whole frequency spectrum. The expressions obtained are transformed to their elementary forms, valid for the high frequencies. Low fluid loading and low internal friction of the plate are assumed. The obtained results are illustrated with sample plots in the domain of acoustic wavenumber. Elementary formulae presented can be useful for further theoretical analysis of the total sound power radiated by an excited flat plate in an acoustic fluid as well as for efficient engineering computations.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"94 4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2014.33.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the sound radiation of a vibrating flat annular plate. The rigorous theoretical considerations deal with sometime-harmonic and axisymmetric vibrations. Three different boundary configurations are considered, i.e. one of the plate’s edges is simply supported and the other one is clamped or also is simply supported. The active and reactive self-impedance of the system are presented in their Hankel’s representations, valid within the whole frequency spectrum. The expressions obtained are transformed to their elementary forms, valid for the high frequencies. Low fluid loading and low internal friction of the plate are assumed. The obtained results are illustrated with sample plots in the domain of acoustic wavenumber. Elementary formulae presented can be useful for further theoretical analysis of the total sound power radiated by an excited flat plate in an acoustic fluid as well as for efficient engineering computations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简支和简支夹紧环形板声自阻抗的渐近公式
本文研究了振动平面环形板的声辐射。严格的理论考虑处理有时谐波和轴对称振动。考虑了三种不同的边界结构,即板的一侧边缘为简支,另一侧边缘为夹紧或也为简支。系统的有功自阻抗和无功自阻抗在全频谱范围内以汉克尔表示表示。得到的表达式转化为初等形式,对高频有效。假定低流体载荷和低板内摩擦。用声波数域的样例图说明了所得结果。所提出的初等公式可用于声流体中受激平板辐射总声功率的进一步理论分析和有效的工程计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanics and Control
International Journal of Mechanics and Control Engineering-Computational Mechanics
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
PHYSICAL MODEL OF VEHICLE ENGINE MOUNT WITH MAGNETORHEOLOGICAL DAMPER EXPERIMENTAL INVESTIGATIONS ON ENERGY HARVESTING FROM MECHANICAL VIBRATIONS OF BUILDINGS USING MACRO FIBER COMPOSITE THE APPLICATION OF SELF-EXCITED VIBRATIONS FOR DYNAMIC STRAIN MEASUREMENTS CARRIED OUT BY VIBRATING WIRE TENSOMETERS Complete kinematic analysis of the Stewart-Gough platform by unit quaternions TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1