MARINE: Multi-relational Network Embeddings with Relational Proximity and Node Attributes

Ming-Han Feng, Chin-Chi Hsu, Cheng-te Li, Mi-Yen Yeh, Shou-de Lin
{"title":"MARINE: Multi-relational Network Embeddings with Relational Proximity and Node Attributes","authors":"Ming-Han Feng, Chin-Chi Hsu, Cheng-te Li, Mi-Yen Yeh, Shou-de Lin","doi":"10.1145/3308558.3313715","DOIUrl":null,"url":null,"abstract":"Network embedding aims at learning an effective vector transformation for entities in a network. We observe that there are two diverse branches of network embedding: for homogeneous graphs and for multi-relational graphs. This paper then proposes MARINE, a unified embedding framework for both homogeneous and multi-relational networks to preserve both the proximity and relation information. We also extend the framework to incorporate existing features of nodes in a graph, which can further be exploited for the ensemble of embedding. Our solution possesses complexity linear to the number of edges, which is suitable for large-scale network applications. Experiments conducted on several real-world network datasets, along with applications in link prediction and multi-label classification, exhibit the superiority of our proposed MARINE.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Network embedding aims at learning an effective vector transformation for entities in a network. We observe that there are two diverse branches of network embedding: for homogeneous graphs and for multi-relational graphs. This paper then proposes MARINE, a unified embedding framework for both homogeneous and multi-relational networks to preserve both the proximity and relation information. We also extend the framework to incorporate existing features of nodes in a graph, which can further be exploited for the ensemble of embedding. Our solution possesses complexity linear to the number of edges, which is suitable for large-scale network applications. Experiments conducted on several real-world network datasets, along with applications in link prediction and multi-label classification, exhibit the superiority of our proposed MARINE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关系接近和节点属性的多关系网络嵌入
网络嵌入的目的是学习网络中实体的有效向量变换。我们观察到网络嵌入有两个不同的分支:同构图和多关系图。在此基础上,本文提出了一种用于同构和多关系网络的统一嵌入框架MARINE,以同时保留接近性和关系信息。我们还扩展了框架,将图中节点的现有特征纳入其中,可以进一步利用这些特征进行集成嵌入。该方案的复杂度与边数成线性关系,适合大规模网络应用。在几个真实网络数据集上进行的实验,以及在链路预测和多标签分类中的应用,显示了我们提出的MARINE的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1