Yuan Zhou, M. Hao, George Chen, P. Jarman, G. Wilson
{"title":"A new approach to understanding the frequency response of mineral oil","authors":"Yuan Zhou, M. Hao, George Chen, P. Jarman, G. Wilson","doi":"10.1109/ICDL.2014.6893143","DOIUrl":null,"url":null,"abstract":"Dielectric spectroscopy is non-invasive diagnostic method and can give information about dipole relaxation, electrical conduction and structure of molecules. Since the creation of charge carriers in mineral oil is not only from dissociation but also injection from electrodes, the injection current cannot be simply ignored. The polarization caused by the charge injection has been studied in this paper. Based on our research, if the mobility of the injected charge carriers is fast enough so that they can reach the opposite electrode, the current caused by the injection will contribute only to the imaginary part of the complex permittivity and this part of the complex permittivity will decrease with the frequency with a slope of -1 which is in a good agreement with the experimental result. The classic ionic drift and diffusion model and this injection model will be combined to make an improved model. In this paper, the frequency responses of three different kinds of mineral oils have been measured, and this modified model has been used to simulate the experiment result. Since there is only one unknown parameter in this improved model, a better understanding of the frequency response in mineral oil can be achieved.","PeriodicalId":6523,"journal":{"name":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","volume":"9 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 18th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2014.6893143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Dielectric spectroscopy is non-invasive diagnostic method and can give information about dipole relaxation, electrical conduction and structure of molecules. Since the creation of charge carriers in mineral oil is not only from dissociation but also injection from electrodes, the injection current cannot be simply ignored. The polarization caused by the charge injection has been studied in this paper. Based on our research, if the mobility of the injected charge carriers is fast enough so that they can reach the opposite electrode, the current caused by the injection will contribute only to the imaginary part of the complex permittivity and this part of the complex permittivity will decrease with the frequency with a slope of -1 which is in a good agreement with the experimental result. The classic ionic drift and diffusion model and this injection model will be combined to make an improved model. In this paper, the frequency responses of three different kinds of mineral oils have been measured, and this modified model has been used to simulate the experiment result. Since there is only one unknown parameter in this improved model, a better understanding of the frequency response in mineral oil can be achieved.