{"title":"Silicon monolithic MEMS + photonic systems","authors":"S. Bhave","doi":"10.1109/DRC.2012.6256960","DOIUrl":null,"url":null,"abstract":"Opto-mechanical systems offer one of the most sensitive methods for detecting mechanical motion using shifts in the optical resonance frequency of the optomechanical resonator. Presently, these systems are used for measuring mechanical thermal noise displacement or mechanical motion actuated by optical forces. Meanwhile, electrostatic capacitive actuation and detection is the main transduction scheme used in RF MEMS resonators. The use of electrostatics is convenient as it allows direct integration with electronics used for processing the RF signals. In this presentation, the author will introduce a method for actuating an opto-mechanical resonator using electrostatic forces and sensing of mechanical motion by using the optical intensity modulation at the output of an optomechanical resonator, integrated into a monolithic system fabricated on a silicon-on-insulator (SOI) platform. The author will discuss new applications enabled by this hybrid system including opto-acoustic oscillators and opto-mechanical accelerometers.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"29 1","pages":"17-18"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Opto-mechanical systems offer one of the most sensitive methods for detecting mechanical motion using shifts in the optical resonance frequency of the optomechanical resonator. Presently, these systems are used for measuring mechanical thermal noise displacement or mechanical motion actuated by optical forces. Meanwhile, electrostatic capacitive actuation and detection is the main transduction scheme used in RF MEMS resonators. The use of electrostatics is convenient as it allows direct integration with electronics used for processing the RF signals. In this presentation, the author will introduce a method for actuating an opto-mechanical resonator using electrostatic forces and sensing of mechanical motion by using the optical intensity modulation at the output of an optomechanical resonator, integrated into a monolithic system fabricated on a silicon-on-insulator (SOI) platform. The author will discuss new applications enabled by this hybrid system including opto-acoustic oscillators and opto-mechanical accelerometers.