Ying-Ren Chen, Chenglung Chung, Gideon Chen, Y. Tzeng
{"title":"Independently controlled etching and growth of graphene quantum dots and their SERS applications","authors":"Ying-Ren Chen, Chenglung Chung, Gideon Chen, Y. Tzeng","doi":"10.1109/NANO.2016.7751493","DOIUrl":null,"url":null,"abstract":"We report the fabrication of graphene quantum dots on Cu substrates by thermal CVD. The synthesized high-density graphene quantum dots exhibit strong surface enhanced Raman scattering (SERS) effects. The nanoscale distance of 30~50nm between neighboring quantum dots combined with quantum dots to form nanostructures favorable for plasmonic coupling enhanced high local electric fields, which lead to greatly enhanced strength of signal from Raman scattering of molecules on the substrate as an effective means of detecting, identifying, and measuring low concentration molecules of scientific and technological significance.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"83 1","pages":"759-762"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report the fabrication of graphene quantum dots on Cu substrates by thermal CVD. The synthesized high-density graphene quantum dots exhibit strong surface enhanced Raman scattering (SERS) effects. The nanoscale distance of 30~50nm between neighboring quantum dots combined with quantum dots to form nanostructures favorable for plasmonic coupling enhanced high local electric fields, which lead to greatly enhanced strength of signal from Raman scattering of molecules on the substrate as an effective means of detecting, identifying, and measuring low concentration molecules of scientific and technological significance.