Evaluation of the Efficiency of Interparticle Interactions in Nanosystems

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanotechnology Pub Date : 2019-04-01 DOI:10.1155/2019/4270454
Hanna Demchenko, N. Rusinchuk
{"title":"Evaluation of the Efficiency of Interparticle Interactions in Nanosystems","authors":"Hanna Demchenko, N. Rusinchuk","doi":"10.1155/2019/4270454","DOIUrl":null,"url":null,"abstract":"Wide range of applications of nanoparticles causes the need to study their properties, and the influence of the interparticle interaction on the formation of the nanosystem properties is a well-known experimental phenomenon. The aim of this work is to study the influence of interparticle interactions on the properties of nanosystems theoretically. The influence of the interparticle interaction was simulated based on the near-field interaction potential and local field distribution. The local field distribution in the system was calculated using the Green function method and the concept of the effective susceptibility. The results show that interaction between nanoparticles can be neglected if the distance between them is bigger than the critical one. Expressions for evaluation of the efficiency of the interparticle coupling were proposed and compared with the existing experimental results. The results of the simulation are in good agreement with the measured values of the critical interparticle distance. The approach may be useful for simulation of interactions in the system of many nanoparticles and for engineering of nanostructures for different applications.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"70 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/4270454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 9

Abstract

Wide range of applications of nanoparticles causes the need to study their properties, and the influence of the interparticle interaction on the formation of the nanosystem properties is a well-known experimental phenomenon. The aim of this work is to study the influence of interparticle interactions on the properties of nanosystems theoretically. The influence of the interparticle interaction was simulated based on the near-field interaction potential and local field distribution. The local field distribution in the system was calculated using the Green function method and the concept of the effective susceptibility. The results show that interaction between nanoparticles can be neglected if the distance between them is bigger than the critical one. Expressions for evaluation of the efficiency of the interparticle coupling were proposed and compared with the existing experimental results. The results of the simulation are in good agreement with the measured values of the critical interparticle distance. The approach may be useful for simulation of interactions in the system of many nanoparticles and for engineering of nanostructures for different applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米系统中粒子间相互作用效率的评价
纳米粒子的广泛应用引起了对其性质的研究,而粒子间相互作用对纳米系统性质形成的影响是众所周知的实验现象。本工作旨在从理论上研究粒子间相互作用对纳米系统性能的影响。基于近场相互作用势和局域场分布,模拟了粒子间相互作用的影响。采用格林函数法和有效磁化率的概念计算了系统的局部场分布。结果表明,当纳米粒子之间的距离大于临界距离时,纳米粒子之间的相互作用可以忽略不计。提出了粒子间耦合效率的评价表达式,并与已有的实验结果进行了比较。模拟结果与粒子间临界距离的实测值吻合较好。该方法可用于模拟多纳米粒子系统中的相互作用,并可用于不同应用的纳米结构工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
期刊最新文献
Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure Phytosynthesized Nanoparticles as Novel Antifungal Agent for Sustainable Agriculture: A Mechanistic Approach, Current Advances, and Future Directions Reduction of SO2 to Elemental Sulfur in Flue Gas Using Copper-Alumina Catalysts Unlocking the Potential of NiSO4·6H2O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1