{"title":"Micro-macro analysis of shear band formation due to reverse fault in various normalized fault throw","authors":"Saman Ghaderi, Alireza Saeedi Azizkandi","doi":"10.1680/jgeen.22.00095","DOIUrl":null,"url":null,"abstract":"A two-dimensional discrete element modeling is adopted to study engineering and fundamental aspects of shear band formation in reverse faulting through sandy soils with varying densities. The employed DEM modeling methodology is verified with the experimental centrifuge result. From an engineering perspective, results show that the shear bands formed due to reverse fault consist of multiple ruptures formed at the different fault raise. These ruptures may deviate toward the hanging or footing wall depending on the faulting angle. The distortion zone outcropping location is captured by the W/H ratio at the 1% normalized fault throw (h/H) step. Various micro and macro aspects of shear banding, such as porosity, coordination number, and strong contact forces within the localized areas along the shear bands, are studied. Moreover, a link is established between the micro and macro events occurring inside the shear bands. The results show that the wedge pressure formed between the shear band and back-thrust rupture in the fault with a dip angle smaller than 45° significantly affects the back-thrust formation and micro-macro parameters in the shearing region.","PeriodicalId":54572,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","volume":"195 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional discrete element modeling is adopted to study engineering and fundamental aspects of shear band formation in reverse faulting through sandy soils with varying densities. The employed DEM modeling methodology is verified with the experimental centrifuge result. From an engineering perspective, results show that the shear bands formed due to reverse fault consist of multiple ruptures formed at the different fault raise. These ruptures may deviate toward the hanging or footing wall depending on the faulting angle. The distortion zone outcropping location is captured by the W/H ratio at the 1% normalized fault throw (h/H) step. Various micro and macro aspects of shear banding, such as porosity, coordination number, and strong contact forces within the localized areas along the shear bands, are studied. Moreover, a link is established between the micro and macro events occurring inside the shear bands. The results show that the wedge pressure formed between the shear band and back-thrust rupture in the fault with a dip angle smaller than 45° significantly affects the back-thrust formation and micro-macro parameters in the shearing region.
期刊介绍:
Geotechnical Engineering provides a forum for the publication of high quality, topical and relevant technical papers covering all aspects of geotechnical research, design, construction and performance. The journal aims to be of interest to those civil, structural or geotechnical engineering practitioners wishing to develop a greater understanding of the influence of geotechnics on the built environment.