Fast Intra Candidate Selection and CU Split in Intra Prediction for Future Video Coding

Chen Li, Congrui Li, Junwen Liu
{"title":"Fast Intra Candidate Selection and CU Split in Intra Prediction for Future Video Coding","authors":"Chen Li, Congrui Li, Junwen Liu","doi":"10.1109/IICSPI.2018.8690465","DOIUrl":null,"url":null,"abstract":"The latest video compression reference software Joint Exploration Model (JEM) achieved outperforming performance in intra prediction. It mainly benefits from the increase of intra direction prediction modes, which changed from 33 to 65 and more flexible CU partition structure quadtree plus binary tree (QTBT). However, these technologies caused very high computational complexity at the same time. This paper, proposed a fast intra candidate selection algorithm based on the Sum of Absolute Hadamard Transformed Difference (SATD) and an early quadtree split termination algorithm to reduce the computational complexity in JEM-7.1. Experimental results show that our first proposed algorithm reduces 10% encoding time on average with only 0.5% loss in terms of Bjøntegaard delta bit rate (BDBR), and the second algorithm shows up to 21% time saving with 0.6% coding performance loss. These experimental results show the efficiency of our proposed algorithms.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"8 1","pages":"723-727"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The latest video compression reference software Joint Exploration Model (JEM) achieved outperforming performance in intra prediction. It mainly benefits from the increase of intra direction prediction modes, which changed from 33 to 65 and more flexible CU partition structure quadtree plus binary tree (QTBT). However, these technologies caused very high computational complexity at the same time. This paper, proposed a fast intra candidate selection algorithm based on the Sum of Absolute Hadamard Transformed Difference (SATD) and an early quadtree split termination algorithm to reduce the computational complexity in JEM-7.1. Experimental results show that our first proposed algorithm reduces 10% encoding time on average with only 0.5% loss in terms of Bjøntegaard delta bit rate (BDBR), and the second algorithm shows up to 21% time saving with 0.6% coding performance loss. These experimental results show the efficiency of our proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向未来视频编码的快速候选帧内选择和帧内预测中的CU分割
最新的视频压缩参考软件Joint Exploration Model (JEM)在帧内预测方面取得了优异的成绩。这主要得益于内部方向预测模式的增加,从33种增加到65种,以及更灵活的CU划分结构四叉树加二叉树(QTBT)。然而,这些技术同时也造成了非常高的计算复杂度。为了降低JEM-7.1的计算复杂度,提出了一种基于绝对Hadamard变换差分(SATD)和早期四叉树分割终止算法的快速候选序列选择算法。实验结果表明,第一种算法平均减少10%的编码时间,仅损失0.5%的Bjøntegaard delta比特率(BDBR);第二种算法平均节省21%的编码时间,编码性能损失0.6%。实验结果表明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1