{"title":"Measurment of Broadband Ultrasound Attenuation Using Tone Burst Frequency Scanning in Trabecular Bone Property Assessment","authors":"Wei Lin, C. Rubin, Yi-Xian Qin","doi":"10.1115/imece2001/bed-23033","DOIUrl":null,"url":null,"abstract":"\n Osteoporosis is characterized by the non-traumatic fracture due to the deterioration of bone properties. Although there is a consensus that the loss of bone mass is the key factor to osteoporosis, the bone material strength and trabecular architecture are also important in the contribution to the whole bone strength. Ultrasound is mechanical in nature and it has the potential to assess the bone density as well as its mechanical stiffness. Ultrasound attenuation is one of the ultrasound parameters used to assess bone properties. Studies have shown that ultrasound attenuation is dependent on bone density [1,2] and is also indicative to the strength of trabecular bone [3,4]. Therefore, ultrasound attenuation has the potential to reveal bone properties. The objective of this study is to develop a frequency scanning method that can better extract the information of not only the bone quantity but also the bone quality.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is characterized by the non-traumatic fracture due to the deterioration of bone properties. Although there is a consensus that the loss of bone mass is the key factor to osteoporosis, the bone material strength and trabecular architecture are also important in the contribution to the whole bone strength. Ultrasound is mechanical in nature and it has the potential to assess the bone density as well as its mechanical stiffness. Ultrasound attenuation is one of the ultrasound parameters used to assess bone properties. Studies have shown that ultrasound attenuation is dependent on bone density [1,2] and is also indicative to the strength of trabecular bone [3,4]. Therefore, ultrasound attenuation has the potential to reveal bone properties. The objective of this study is to develop a frequency scanning method that can better extract the information of not only the bone quantity but also the bone quality.