{"title":"Classification of motor imagery for Ear-EEG based brain-computer interface","authors":"Yong-Jeong Kim, No-Sang Kwak, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2018.8311517","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) researchers have shown an increased interest in the development of ear-electroencephalography (EEG), which is a method for measuring EEG signals in the ear or around the outer ear, to provide a more convenient BCI system to users. However, the ear-EEG studies have researched mostly targeting on a visual/auditory stimuli-based BCI system or a drowsiness detection system. To the best of our knowledge, there is no study on a motor-imagery (MI) detection system based on ear-EEG. MI is one of the mostly used paradigms in BCI because it does not need any external stimuli. MI that associated with ear-EEG could facilitate useful BCI applications in real-world. Hence, in this study, we aim to investigate a feasibility of the MI classification using ear-around EEG signals. We proposed a common spatial pattern (CSP)-based frequency-band optimization algorithm and compared it with three existing methods. The best classification results for two datasets are 71.8% and 68.07%, respectively, using the ear-around EEG signals (cf. 92.40% and 91.64% using motor-area EEG signals).","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"67 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Brain-computer interface (BCI) researchers have shown an increased interest in the development of ear-electroencephalography (EEG), which is a method for measuring EEG signals in the ear or around the outer ear, to provide a more convenient BCI system to users. However, the ear-EEG studies have researched mostly targeting on a visual/auditory stimuli-based BCI system or a drowsiness detection system. To the best of our knowledge, there is no study on a motor-imagery (MI) detection system based on ear-EEG. MI is one of the mostly used paradigms in BCI because it does not need any external stimuli. MI that associated with ear-EEG could facilitate useful BCI applications in real-world. Hence, in this study, we aim to investigate a feasibility of the MI classification using ear-around EEG signals. We proposed a common spatial pattern (CSP)-based frequency-band optimization algorithm and compared it with three existing methods. The best classification results for two datasets are 71.8% and 68.07%, respectively, using the ear-around EEG signals (cf. 92.40% and 91.64% using motor-area EEG signals).