Tzu-Hsuan Cheng, Kenji Nishiguchi, Y. Fukawa, D. Hopkins
{"title":"Thermal and Reliability Performance Comparison of DBC-Based and Organic-Based Double-Sided Cooled Power Modules","authors":"Tzu-Hsuan Cheng, Kenji Nishiguchi, Y. Fukawa, D. Hopkins","doi":"10.4071/1085-8024-2021.1.000382","DOIUrl":null,"url":null,"abstract":"\n Direct Bonded Copper (DBC) is the most popular solution for conventional high-power modules because of superior thermal/electrical/mechanical performance and mature manufacturing. To meet the rising demand of power density and power rating, a Double-Sided Cooled (DSC) sandwich structure using dual insulated metal-clad substrates was proposed and DBC still dominated the substrate selection of DSC power modules. However, there are several long-existing reliability challenges of conventional DBC-based power modules and the cost of DBC is relatively high compared with organic and metal (e.g. lead frame) substrates. This study proposes a DSC 1.2 kV half-bridge power module using dual epoxy-resin Insulated Metal Substrate (eIMS) for solving DBC-based power module issues and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) DBC-based DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 μm) epoxy-resin composite dielectric layer compared with Alumina. The breakdown voltage of this high thermally conductive organic dielectric is 5 kVAC (@ 120 μm) and the Glass Transition Temperature (Tg) is 300°C which is indispensable for Wide-Band-Gap (WBG) devices and high-power applications. In terms of thermal-mechanical reliability, the organic-based DSC power module can pass the thermal cycling test over 2000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this paper not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/1085-8024-2021.1.000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Direct Bonded Copper (DBC) is the most popular solution for conventional high-power modules because of superior thermal/electrical/mechanical performance and mature manufacturing. To meet the rising demand of power density and power rating, a Double-Sided Cooled (DSC) sandwich structure using dual insulated metal-clad substrates was proposed and DBC still dominated the substrate selection of DSC power modules. However, there are several long-existing reliability challenges of conventional DBC-based power modules and the cost of DBC is relatively high compared with organic and metal (e.g. lead frame) substrates. This study proposes a DSC 1.2 kV half-bridge power module using dual epoxy-resin Insulated Metal Substrate (eIMS) for solving DBC-based power module issues and providing a cost-effective solution. The thermal performance outperforms traditional Alumina (Al2O3) DBC-based DSC power module due to moderate thermal conductivity (10 W/mK) and thin (120 μm) epoxy-resin composite dielectric layer compared with Alumina. The breakdown voltage of this high thermally conductive organic dielectric is 5 kVAC (@ 120 μm) and the Glass Transition Temperature (Tg) is 300°C which is indispensable for Wide-Band-Gap (WBG) devices and high-power applications. In terms of thermal-mechanical reliability, the organic-based DSC power module can pass the thermal cycling test over 2000 cycles by optimizing the mechanical properties of the encapsulant material. In conclusion, this paper not only proposes a competitive organic-based power module but also a methodology of evaluation for thermal and mechanical performance.