Ren Yu, Luo Yihan, Xu Shaoxiong, Ma Hao-Tong, Tan Yi
{"title":"A comparative study of time of flight extraction methods in non-line-of-sight location","authors":"Ren Yu, Luo Yihan, Xu Shaoxiong, Ma Hao-Tong, Tan Yi","doi":"10.12086/OEE.2021.200124","DOIUrl":null,"url":null,"abstract":"Non-line-of-sight location is an active detection technology which is used to detect the position of objects out of sight by extracting the time of flight. It is a research hotspot in recent years. In order to study the performance differences of mean filter, median filter and Gaussian filter in extracting time of flight, firstly, the energy changing model of photon flight model is optimized by photometry, and then the parameters of the three filtering methods are optimized and analyzed. After that, the adaptability of these three extraction methods to the maximum value judgment method and probability threshold weighted judgment method is analyzed. Finally, the accuracy and stability of these three time extraction algorithms are compared by using the positions of devices and invisible object as variables. The simulation results show that the median filter is suitable for a narrow environment and it has the high accuracy in positioning; the locations with Gaussian filter have good positioning stability and there is a wider selection range of filtering parameters when the signal is processed with Gaussian filter.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"63 1","pages":"200124"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Non-line-of-sight location is an active detection technology which is used to detect the position of objects out of sight by extracting the time of flight. It is a research hotspot in recent years. In order to study the performance differences of mean filter, median filter and Gaussian filter in extracting time of flight, firstly, the energy changing model of photon flight model is optimized by photometry, and then the parameters of the three filtering methods are optimized and analyzed. After that, the adaptability of these three extraction methods to the maximum value judgment method and probability threshold weighted judgment method is analyzed. Finally, the accuracy and stability of these three time extraction algorithms are compared by using the positions of devices and invisible object as variables. The simulation results show that the median filter is suitable for a narrow environment and it has the high accuracy in positioning; the locations with Gaussian filter have good positioning stability and there is a wider selection range of filtering parameters when the signal is processed with Gaussian filter.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing