S. Hati, Hemlata Chawla, Arnab Ghosh, U. Guru, B. Ray, R. Guru, Sambit Pattanaik
{"title":"A Comprehensive Reservoir Quality Characterization for Fractured Basements in India","authors":"S. Hati, Hemlata Chawla, Arnab Ghosh, U. Guru, B. Ray, R. Guru, Sambit Pattanaik","doi":"10.2118/193092-MS","DOIUrl":null,"url":null,"abstract":"\n As oil and gas exploration and development forays into unconventional plays, more specifically, basement exploration, its characterization and understanding have become very important. The present study aims at understanding the reservoir quality in terms of complex mineralogy and lithology variations, porosity, fracture properties and distribution near and away from the borehole using an integrated approach with the help of elemental spectroscopy, borehole acoustic imager, borehole micro-resistivity imager, nuclear magnetic resonance and borehole acoustic reflection survey.\n A comprehensive petrophysical characterization of different mineralo-facies of basement was carried out using elemental spectroscopy, formation micro-resistivity imager, borehole acoustic imager and combinable magnetic resonance along with basic open-hole data. Two distinct rock groups were identified – silica rich, iron poor zones having open fractures with good fracture density, porosity and aperture and silica poor, iron rich zones with no open fractures, poor fracture density, porosity and apertures. The zones with open fractures were the prime zones identified for further testing and completion. However, the near well bore analysis could not explain the oil flow from one zone having open fractures, whereas another similar zone showed no flow.\n Borehole Acoustic Reflection Survey processing was attempted to understand how extent of fractures beyond the borehole wall contributed to productivity from a well. The presence of laterally continuous fracture network at an interval that coincides with the depths from which the well is flowing, in turn validated from production log data, explained fluid flow from basement. Furthermore, the absence of such network can cause no flow even though near well-bore possible open fractures are present.\n Present study established the fact that, identification of potential open fractured zones in basement is a lead for reservoir zone delineation, however, a lateral extent of such basement reservoir facies is the key for successful basement hydrocarbon exploration.","PeriodicalId":11014,"journal":{"name":"Day 1 Mon, November 12, 2018","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193092-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As oil and gas exploration and development forays into unconventional plays, more specifically, basement exploration, its characterization and understanding have become very important. The present study aims at understanding the reservoir quality in terms of complex mineralogy and lithology variations, porosity, fracture properties and distribution near and away from the borehole using an integrated approach with the help of elemental spectroscopy, borehole acoustic imager, borehole micro-resistivity imager, nuclear magnetic resonance and borehole acoustic reflection survey.
A comprehensive petrophysical characterization of different mineralo-facies of basement was carried out using elemental spectroscopy, formation micro-resistivity imager, borehole acoustic imager and combinable magnetic resonance along with basic open-hole data. Two distinct rock groups were identified – silica rich, iron poor zones having open fractures with good fracture density, porosity and aperture and silica poor, iron rich zones with no open fractures, poor fracture density, porosity and apertures. The zones with open fractures were the prime zones identified for further testing and completion. However, the near well bore analysis could not explain the oil flow from one zone having open fractures, whereas another similar zone showed no flow.
Borehole Acoustic Reflection Survey processing was attempted to understand how extent of fractures beyond the borehole wall contributed to productivity from a well. The presence of laterally continuous fracture network at an interval that coincides with the depths from which the well is flowing, in turn validated from production log data, explained fluid flow from basement. Furthermore, the absence of such network can cause no flow even though near well-bore possible open fractures are present.
Present study established the fact that, identification of potential open fractured zones in basement is a lead for reservoir zone delineation, however, a lateral extent of such basement reservoir facies is the key for successful basement hydrocarbon exploration.