Roadside acoustic sensors to support vulnerable pedestrians via their smartphone

Masoomeh Khalili, M. Ghatee, M. Teimouri, Mohammad Mahdi Bejani
{"title":"Roadside acoustic sensors to support vulnerable pedestrians via their smartphone","authors":"Masoomeh Khalili, M. Ghatee, M. Teimouri, Mohammad Mahdi Bejani","doi":"10.22060/ajmc.2019.15479.1017","DOIUrl":null,"url":null,"abstract":"We propose a new warning system based on smartphones that evaluates the risk of motor vehicle for vulnerable pedestrian (VP). The acoustic sensors are embedded in roadside to receive vehicles sounds and they are classified into heavy vehicle, light vehicle with low speed, light vehicle with high speed, and no vehicle classes. For this aim, we extract new features by Mel-frequency Cepstrum Coefficients (MFCC) and Linear Predictive Coefficients (LPC) algorithms. We use different classification algorithms and show that MLP neural network achieves at least 96.77% in accuracy criterion. To install this system, directional microphones are embedded on roadside and the risk is classified there. Then, for every microphone, a danger area is defined and the warning alarms have been sent to every VPs smartphones covered in this danger area.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22060/ajmc.2019.15479.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new warning system based on smartphones that evaluates the risk of motor vehicle for vulnerable pedestrian (VP). The acoustic sensors are embedded in roadside to receive vehicles sounds and they are classified into heavy vehicle, light vehicle with low speed, light vehicle with high speed, and no vehicle classes. For this aim, we extract new features by Mel-frequency Cepstrum Coefficients (MFCC) and Linear Predictive Coefficients (LPC) algorithms. We use different classification algorithms and show that MLP neural network achieves at least 96.77% in accuracy criterion. To install this system, directional microphones are embedded on roadside and the risk is classified there. Then, for every microphone, a danger area is defined and the warning alarms have been sent to every VPs smartphones covered in this danger area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
路边的声学传感器可以通过智能手机为脆弱的行人提供支持
本文提出了一种基于智能手机的机动车对弱势行人(VP)风险评估的预警系统。声学传感器嵌入路边接收车辆声音,分为重型车辆、低速轻型车辆、高速轻型车辆和无车辆类别。为此,我们采用Mel-frequency倒频谱系数(MFCC)和线性预测系数(LPC)算法提取新的特征。使用不同的分类算法,结果表明,MLP神经网络的准确率至少达到96.77%。为了安装该系统,在路边嵌入定向麦克风,并在那里进行风险分类。然后,为每个麦克风定义一个危险区域,并将警告警报发送到该危险区域覆盖的每个副总裁的智能手机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Localization of Active Aerial Targets Using a Single Terrestrial Receiver Site Feasibility Study on Intra-Grid Location Estimation Using Power ENF Signals Photonic perceptron at Giga-OP/s speeds with Kerr microcombs for scalable optical neural networks Nonlinear methods to quantify Movement Variability in Human-Humanoid Interaction Activities Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1