{"title":"Processing and microstructural control: lessons from natural materials","authors":"Christopher Viney","doi":"10.1016/0920-2307(93)90006-Z","DOIUrl":null,"url":null,"abstract":"<div><p>Renewable natural materials have been exploited for several millennia. Within the past two decades, it has become apparent that materials science can benefit from a detailed knowledge of the synthetic pathways and molecular self-assembly mechanisms by which natural materials are produced. This review describes the most significant classes of macromolecule used in the synthesis of biological materials. It explains how the techniques of genetic engineering can be employed to modify the structure or quantitative yield of these materials. The role of the liquid crystalline state in materials self-assembly, and the effects of hierachical molecular order on the properties of natural materials, are emphasized. The wide range of contexts in which biological principles have impacted materials science is illustrated with several specific examples.</p></div>","PeriodicalId":100891,"journal":{"name":"Materials Science Reports","volume":"10 5","pages":"Pages 187-236"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0920-2307(93)90006-Z","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092023079390006Z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Renewable natural materials have been exploited for several millennia. Within the past two decades, it has become apparent that materials science can benefit from a detailed knowledge of the synthetic pathways and molecular self-assembly mechanisms by which natural materials are produced. This review describes the most significant classes of macromolecule used in the synthesis of biological materials. It explains how the techniques of genetic engineering can be employed to modify the structure or quantitative yield of these materials. The role of the liquid crystalline state in materials self-assembly, and the effects of hierachical molecular order on the properties of natural materials, are emphasized. The wide range of contexts in which biological principles have impacted materials science is illustrated with several specific examples.