Passive Die Alignment in Glass Embedded Fan-Out Packaging

Roman Ostholt, R. Santos, N. Ambrosius, D. Dunker, J. Delrue
{"title":"Passive Die Alignment in Glass Embedded Fan-Out Packaging","authors":"Roman Ostholt, R. Santos, N. Ambrosius, D. Dunker, J. Delrue","doi":"10.4071/2380-4505-2019.1.000152","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to demonstrate the feasibility of glass mounting substrates made by Laser Induced Deept Etching (LIDE) technology, which include newly developed passive die alignment structures. The aim of these structures is to compensate for potential die misalignments and die shift issues which become severe when moving to panel level fan-out packaging.\n The passive alignment structures are located at two adjacent edges of the rectangular cavity and are created in the same process step as the open cavities. The filigree spring-like alignment structures benefit from being processed in a crack- and stress-free manner. Although the spring elements have a minimal dimension of less than 100 μm, these structures show an outstanding break strength while deformed when active dies are placed in the mounting cavity. Depending on the design, the spring elements can have a stroke of several tenths of micrometer which enable the compensation of rather large die displacements.\n Here, we present examples for LIDE-processed mounting glass substrates with the described features. The performance of the proposed design and method was evaluated with a die accuracy study. Test dies with alignment marks were placed in the cavities and measured relatively to alignments marks on the mounting glass substrate. The Fan-Out packaging concept based on the research shown here combines several advantages: due to the relatively high Young's modulus of the glass, the reconstituted wafer shows less warpage than in the state-of-art; while the passive alignment structures reduce the die shift to a minimum (depending on dicing accuracies and through package vias for package-on-package or antenna-in-package application), and can be readily integrated.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of this paper is to demonstrate the feasibility of glass mounting substrates made by Laser Induced Deept Etching (LIDE) technology, which include newly developed passive die alignment structures. The aim of these structures is to compensate for potential die misalignments and die shift issues which become severe when moving to panel level fan-out packaging. The passive alignment structures are located at two adjacent edges of the rectangular cavity and are created in the same process step as the open cavities. The filigree spring-like alignment structures benefit from being processed in a crack- and stress-free manner. Although the spring elements have a minimal dimension of less than 100 μm, these structures show an outstanding break strength while deformed when active dies are placed in the mounting cavity. Depending on the design, the spring elements can have a stroke of several tenths of micrometer which enable the compensation of rather large die displacements. Here, we present examples for LIDE-processed mounting glass substrates with the described features. The performance of the proposed design and method was evaluated with a die accuracy study. Test dies with alignment marks were placed in the cavities and measured relatively to alignments marks on the mounting glass substrate. The Fan-Out packaging concept based on the research shown here combines several advantages: due to the relatively high Young's modulus of the glass, the reconstituted wafer shows less warpage than in the state-of-art; while the passive alignment structures reduce the die shift to a minimum (depending on dicing accuracies and through package vias for package-on-package or antenna-in-package application), and can be readily integrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻璃内嵌扇出封装中的被动模对中
本文的目的是证明激光诱导深度蚀刻(LIDE)技术制造玻璃安装基板的可行性,其中包括新开发的被动模具对准结构。这些结构的目的是为了补偿潜在的模具错位和模具移位问题,这些问题在移动到面板水平扇形封装时变得严重。所述被动对准结构位于所述矩形空腔的两个相邻边缘,并以与所述开放空腔相同的工艺步骤创建。丝状弹簧式对准结构受益于以无裂纹和无应力的方式加工。虽然弹簧元件的最小尺寸小于100 μm,但当将活动模具放置在安装腔中时,这些结构在变形时显示出出色的断裂强度。根据设计,弹簧元件可以有几个十分之一微米的行程,这使得补偿相当大的模具位移。在这里,我们展示了具有上述特征的lide加工安装玻璃基板的示例。通过对模具精度的研究对所提出的设计和方法的性能进行了评价。将带有对中标记的测试模具放置在空腔中,并相对于安装玻璃基板上的对中标记进行测量。基于这里所展示的研究的扇出包装概念结合了几个优点:由于玻璃的杨氏模量相对较高,重构晶圆比最先进的晶圆显示更少的翘曲;而无源对准结构将芯片移位减少到最小(取决于切割精度和通过封装上封装或天线中封装应用的封装通孔),并且可以很容易地集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Packaging Technology for Novel 1-dimensional and 2-dimensional VCSEL Arrays The Pivotal Role of Uniformity of Electrolytic Deposition Processes to Improve the Reliability of Advanced Packaging Enhancing the Paste Release on 55μm pads with Water-Soluble Type 7 SAC305 Solder Paste for High Density SIP Application Coronavirus, chip boom, and supply shortage: The new normal for global semiconductor manufacturing Lithography Solutions for Submicron Panel-Level Packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1