Jashann Ashwyn, Yong Qi Leong, Khuen Yen Ng, S. Chye, Anne Pick, Kiong Ling, K. Voon, Y. Y. Ooi, Y. Tiong, R. Koh
{"title":"Anti-neuroinflammatory mechanism of safinamide in inhibiting lipopolysaccharide-induced microglial activation","authors":"Jashann Ashwyn, Yong Qi Leong, Khuen Yen Ng, S. Chye, Anne Pick, Kiong Ling, K. Voon, Y. Y. Ooi, Y. Tiong, R. Koh","doi":"10.29090/psa.2023.03.22.333","DOIUrl":null,"url":null,"abstract":"Neuroinflammation is an inflammatory response in the central nervous system that may lead to neurodegenerative diseases, such as Parkinson’s disease (PD). PD is the second most common neurodegenerative disorder with a high prevalence among elderly individuals. Microglia, which are associated with neuroprotection, are activated during inflammation, resulting in damage to dopaminergic neurons in the substantia nigra. Based on previous studies, safinamide can provide neuroprotection to dopaminergic neurons by inhibiting microglial activation. Hence, this study aims to investigate the anti-neuroinflammatory mechanism of safinamide in inhibiting lipopolysaccharide (LPS)-induced microglial activation. 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of safinamide on BV-2 (microglial) cells. Maximum non-toxic dose (MNTD) and half MNTD of safinamide were then calculated. To determine whether safinamide could rescue lipopoly-saccharide-treated BV-2 cells from cell death and oxidative stress, MTT assay and dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay were performed, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to investigate the involvement of STAT1/NF-kappa B pathway proteins in the activation of microglia. The MNTD of safinamide was determined to be 29.5±10.66 µM. Safinamide was not able to rescue BV-2 cells from LPS-induced cell death. Nevertheless, a slight reduction of reactive oxygen species levels was noted when LPS-induced BV-2 cells were treated with safinamide. There was a slight decrease in protein expression of STAT1, NF-kappa B, iNOS and COX-2 in the LPS-induced BV-2 cells after treatment with safinamide. While safinamide did not rescue BV-2 cells from cell death, safinamide has been shown to slightly reduce oxidative stress in BV-2 cells.","PeriodicalId":19761,"journal":{"name":"Pharmaceutical Sciences Asia","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Sciences Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29090/psa.2023.03.22.333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation is an inflammatory response in the central nervous system that may lead to neurodegenerative diseases, such as Parkinson’s disease (PD). PD is the second most common neurodegenerative disorder with a high prevalence among elderly individuals. Microglia, which are associated with neuroprotection, are activated during inflammation, resulting in damage to dopaminergic neurons in the substantia nigra. Based on previous studies, safinamide can provide neuroprotection to dopaminergic neurons by inhibiting microglial activation. Hence, this study aims to investigate the anti-neuroinflammatory mechanism of safinamide in inhibiting lipopolysaccharide (LPS)-induced microglial activation. 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of safinamide on BV-2 (microglial) cells. Maximum non-toxic dose (MNTD) and half MNTD of safinamide were then calculated. To determine whether safinamide could rescue lipopoly-saccharide-treated BV-2 cells from cell death and oxidative stress, MTT assay and dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay were performed, respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to investigate the involvement of STAT1/NF-kappa B pathway proteins in the activation of microglia. The MNTD of safinamide was determined to be 29.5±10.66 µM. Safinamide was not able to rescue BV-2 cells from LPS-induced cell death. Nevertheless, a slight reduction of reactive oxygen species levels was noted when LPS-induced BV-2 cells were treated with safinamide. There was a slight decrease in protein expression of STAT1, NF-kappa B, iNOS and COX-2 in the LPS-induced BV-2 cells after treatment with safinamide. While safinamide did not rescue BV-2 cells from cell death, safinamide has been shown to slightly reduce oxidative stress in BV-2 cells.
Pharmaceutical Sciences AsiaPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
0.90
自引率
0.00%
发文量
59
期刊介绍:
The Pharmaceutical Sciences Asia (PSA) journal is a double-blinded peer-reviewed journal in English published quarterly, by the Faculty of Pharmacy, Mahidol University, Thailand. The PSA journal is formerly known as Mahidol University Journal of Pharmaceutical Sciences and committed to the timely publication of innovative articles and reviews. This journal is available in both printed and electronic formats. The PSA journal aims at establishing a publishing house that is open to all. It aims to disseminate knowledge; provide a learned reference in the field; and establish channels of communication between academic and research expert, policy makers and executives in industry and investment institutions. The journal publishes research articles, review articles, and scientific commentaries on all aspects of the pharmaceutical sciences and multidisciplinary field in health professions and medicine. More specifically, the journal publishes research on all areas of pharmaceutical sciences and related disciplines: Clinical Pharmacy Drug Synthesis and Discovery Targeted-Drug Delivery Pharmaceutics Biopharmaceutical Sciences Phytopharmaceutical Sciences Pharmacology and Toxicology Pharmaceutical Chemistry Nutraceuticals and Functional Foods Natural Products Social, Economic, and Administrative Pharmacy Clinical Drug Evaluation and Drug Policy Making Antimicrobials, Resistance and Infection Control Pharmacokinetics and Pharmacodynamics.