D. Eliche-Quesada, L. Pérez-Villarejo, P. Sánchez-Soto
{"title":"Introductory Chapter: Ceramic Materials - Synthesis, Characterization, Applications and Recycling","authors":"D. Eliche-Quesada, L. Pérez-Villarejo, P. Sánchez-Soto","doi":"10.5772/INTECHOPEN.84710","DOIUrl":null,"url":null,"abstract":"Ceramic materials can be defined as inorganic materials constituted by the combination of metallic and nonmetallic elements whose properties depend on the way in which these elements are linked [1, 2]. Ceramic materials are the most versatile branch of materials. The origin of this versatility lies in the chemical nature of its bonds, since they are mainly constituted by strong ionic and covalent bonds in different proportions. The bonds determine a series of particular properties of ceramic materials among which are relatively high fusion temperatures, high modulus, high wear strength, poor thermal properties, high hardness and fragilities combined with tenacities, and low ductility. In addition to the lack of conduction electrons since they are combined forming chemical bonds, they are good electrical insulators. Ceramic materials can be divided into two large groups: traditional ceramics and technical or advanced ceramics. Traditional ceramics can be defined as those that are based on silicates, among which are cement, clay products, and refractories. Traditional ceramics are produced in large volumes and constitute an important market. Traditional ceramic materials are made with raw materials from natural deposits such as clay materials. The second group, technical or advanced ceramics, is manufactured with artificial raw materials that have undergone an important chemical processing to achieve a high purity and an improvement of their physical characteristics. Therefore, they are manufactured with more advanced and sophisticated methods. Among them are carbides, nitrides, borides, pure oxides, and a great variety of ceramics with magnetic, ferroelectric, piezoelectric, and superconducting applications, among others. These ceramics possess excellent mechanical properties under extreme conditions of tension, high wear strength or excellent electrical, magnetic, or optical properties, or exceptional strength to high temperatures and corrosive environments, showing high strength to chemical attack [3]. There is a third group that is glasses that, although considered ceramic, are studied separately because they differ from the first group in the order reached by their crystalline structures as glass-ceramics. The versatility mentioned above also allows ceramics to be used for a large number of end user and applications for the construction and building industry such as clay bricks and blocks, sanitary ware, and wall and floor tiles; in household","PeriodicalId":9696,"journal":{"name":"Ceramic Materials - Synthesis, Characterization, Applications and Recycling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramic Materials - Synthesis, Characterization, Applications and Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.84710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Ceramic materials can be defined as inorganic materials constituted by the combination of metallic and nonmetallic elements whose properties depend on the way in which these elements are linked [1, 2]. Ceramic materials are the most versatile branch of materials. The origin of this versatility lies in the chemical nature of its bonds, since they are mainly constituted by strong ionic and covalent bonds in different proportions. The bonds determine a series of particular properties of ceramic materials among which are relatively high fusion temperatures, high modulus, high wear strength, poor thermal properties, high hardness and fragilities combined with tenacities, and low ductility. In addition to the lack of conduction electrons since they are combined forming chemical bonds, they are good electrical insulators. Ceramic materials can be divided into two large groups: traditional ceramics and technical or advanced ceramics. Traditional ceramics can be defined as those that are based on silicates, among which are cement, clay products, and refractories. Traditional ceramics are produced in large volumes and constitute an important market. Traditional ceramic materials are made with raw materials from natural deposits such as clay materials. The second group, technical or advanced ceramics, is manufactured with artificial raw materials that have undergone an important chemical processing to achieve a high purity and an improvement of their physical characteristics. Therefore, they are manufactured with more advanced and sophisticated methods. Among them are carbides, nitrides, borides, pure oxides, and a great variety of ceramics with magnetic, ferroelectric, piezoelectric, and superconducting applications, among others. These ceramics possess excellent mechanical properties under extreme conditions of tension, high wear strength or excellent electrical, magnetic, or optical properties, or exceptional strength to high temperatures and corrosive environments, showing high strength to chemical attack [3]. There is a third group that is glasses that, although considered ceramic, are studied separately because they differ from the first group in the order reached by their crystalline structures as glass-ceramics. The versatility mentioned above also allows ceramics to be used for a large number of end user and applications for the construction and building industry such as clay bricks and blocks, sanitary ware, and wall and floor tiles; in household