Marks Dextre, Oscar Rosas, Jesus Lazo, J. C. Gutiérrez
{"title":"Gun Detection in Real-Time, using YOLOv5 on Jetson AGX Xavier","authors":"Marks Dextre, Oscar Rosas, Jesus Lazo, J. C. Gutiérrez","doi":"10.1109/CLEI53233.2021.9640100","DOIUrl":null,"url":null,"abstract":"Automating the detection of weapons from video surveillance images is a difficult task due to: lighting, focus, resolution, among others. Solving this problem would be very useful for citizen security purposes. In this sense, this research work trains a weapon detection system based on YOLOv5 (You Only Look Once) for different data sources, reaching an accuracy of 98.56 % in video surveillance images, performing Real-Time inferences reaching 33 fps on Nvidia's Jetson AGX Xavier which is a good result compared to other existing research in the state of the art.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"42 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9640100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Automating the detection of weapons from video surveillance images is a difficult task due to: lighting, focus, resolution, among others. Solving this problem would be very useful for citizen security purposes. In this sense, this research work trains a weapon detection system based on YOLOv5 (You Only Look Once) for different data sources, reaching an accuracy of 98.56 % in video surveillance images, performing Real-Time inferences reaching 33 fps on Nvidia's Jetson AGX Xavier which is a good result compared to other existing research in the state of the art.