{"title":"Time-course Pattern of Electrolyte Leakage from Tuberous Roots of Sweetpotato (Ipomoea batatas (L.) Lam.) after Short-term High Temperature","authors":"T. Eguchi, S. Yoshida","doi":"10.2525/ECB.54.183","DOIUrl":null,"url":null,"abstract":"Sweetpotato (Ipomoea batatas (L.) Lam.) plants which are surface-irrigated periodically, i.e., twice a week on root media, show greater -tocopherol content in their tuberous roots with no apparent change in either tuberous root development or oxygen concentration around the roots as compared to sub-irrigated plants (Eguchi et al., 2012). We speculated that surface irrigation might temporarily cover the tuberous root surface with water and inhibit oxygen movement into the roots, thereby increasing the antioxidant -tocopherol content as a coping mechanism for the slight oxidative stress, i.e. hypoxia, occurring within the roots. Therefore, we performed instantaneous flooding, which completely covered the entire root surface of sweetpotato plants with water (Eguchi et al., 2015) and demonstrated that electrolyte leakage from the tuberous root flesh cells showed a temporal increase with flooding treatment and is an indicator of cellular responses to various stress factors (Demidchik et al., 2014). Rise in temperature activates respiration within the heated plant part; in a similar way, high-temperature treatment applied to the tuberous root can also cause slight oxidative stress within the root similar to that caused by instantaneous flooding. We therefore investigated electrolyte leakage from tuberous roots subjected to high temperature for short durations.","PeriodicalId":11762,"journal":{"name":"Environmental Control in Biology","volume":"7 1","pages":"183-185"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Control in Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2525/ECB.54.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) plants which are surface-irrigated periodically, i.e., twice a week on root media, show greater -tocopherol content in their tuberous roots with no apparent change in either tuberous root development or oxygen concentration around the roots as compared to sub-irrigated plants (Eguchi et al., 2012). We speculated that surface irrigation might temporarily cover the tuberous root surface with water and inhibit oxygen movement into the roots, thereby increasing the antioxidant -tocopherol content as a coping mechanism for the slight oxidative stress, i.e. hypoxia, occurring within the roots. Therefore, we performed instantaneous flooding, which completely covered the entire root surface of sweetpotato plants with water (Eguchi et al., 2015) and demonstrated that electrolyte leakage from the tuberous root flesh cells showed a temporal increase with flooding treatment and is an indicator of cellular responses to various stress factors (Demidchik et al., 2014). Rise in temperature activates respiration within the heated plant part; in a similar way, high-temperature treatment applied to the tuberous root can also cause slight oxidative stress within the root similar to that caused by instantaneous flooding. We therefore investigated electrolyte leakage from tuberous roots subjected to high temperature for short durations.
甘薯(iomoea batatas)(Lam.)与次灌溉植物相比,定期表面灌溉(即每周两次在根介质上灌溉)的植物,其块根中-生育酚含量更高,块根发育和根周围氧浓度均无明显变化(Eguchi等,2012)。我们推测,地表灌溉可能暂时将水覆盖在块根表面,抑制氧进入根部,从而增加抗氧化剂-生育酚含量,作为根内发生的轻微氧化应激(即缺氧)的应对机制。因此,我们进行了瞬时淹水,将水完全覆盖甘薯植株的整个根表面(Eguchi et al., 2015),并证明了在淹水处理下,块根肉细胞的电解质泄漏呈时间性增加,这是细胞对各种胁迫因素反应的一个指标(Demidchik et al., 2014)。温度升高会激活加热植物部分的呼吸作用;同样,对块根进行高温处理也会在块根内引起轻微的氧化应激,类似于瞬时淹水造成的氧化应激。因此,我们研究了短时间高温下块根的电解质泄漏。