Seungchan Woo, Jaehyoung Park, Soonhong Kwon, Kyungmin Park, Jong-Hoi Kim, Jong-Hyouk Lee
{"title":"Simulation of Data Hijacking Attacks for a 5G-Advanced Core Network","authors":"Seungchan Woo, Jaehyoung Park, Soonhong Kwon, Kyungmin Park, Jong-Hoi Kim, Jong-Hyouk Lee","doi":"10.1109/EuCNC/6GSummit58263.2023.10188298","DOIUrl":null,"url":null,"abstract":"The5G mobile communication technology provides a faster transmission speed, larger bandwidth, and the ability to connect a greater number of devices than 4G. However, ensuring the successful transition to 5G-Advanced requires addressing various security vulnerabilities and threats. It is imperative in 5G-Advanced and higher mobile communications to address the security risks that have arisen in current mobile communication systems. In this paper, we perform a simulation of scenario-based data hijacking attacks for a 5G-Advanced core network. The conducted simulation results demonstrate that two different data hijacking attacks are possible, with sensitive information being vulnerable to exploitation through security weaknesses such as the lack of encryption for internal communication and inadequate authentication of internal components in the 5G-Advanced core network.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"29 1","pages":"538-542"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The5G mobile communication technology provides a faster transmission speed, larger bandwidth, and the ability to connect a greater number of devices than 4G. However, ensuring the successful transition to 5G-Advanced requires addressing various security vulnerabilities and threats. It is imperative in 5G-Advanced and higher mobile communications to address the security risks that have arisen in current mobile communication systems. In this paper, we perform a simulation of scenario-based data hijacking attacks for a 5G-Advanced core network. The conducted simulation results demonstrate that two different data hijacking attacks are possible, with sensitive information being vulnerable to exploitation through security weaknesses such as the lack of encryption for internal communication and inadequate authentication of internal components in the 5G-Advanced core network.