D. A. Massewa, Muhammad Rifaat, Ferdyan Ihza Akbar, Rahmanda Fadri, Denny Mulia Akbar, Aris Rachmadani, Ichbal Uswitra, F. Nugraha, Fertian Eka Purnama, Bomantara Zaelani, Ridwan Widijanto
{"title":"Innovative Method for Efficient Real Time Online Well Monitoring to Enhance Crew Respond Time in Marginal Field","authors":"D. A. Massewa, Muhammad Rifaat, Ferdyan Ihza Akbar, Rahmanda Fadri, Denny Mulia Akbar, Aris Rachmadani, Ichbal Uswitra, F. Nugraha, Fertian Eka Purnama, Bomantara Zaelani, Ridwan Widijanto","doi":"10.2118/205795-ms","DOIUrl":null,"url":null,"abstract":"\n Previously, well monitoring in Siak block relied on production crew scheduled tour that needed six hours to complete one cycle of all wells in Lindai field. This paper describes the utilization of digital technology to observe well parameters while sending notification if there is any anomaly regarding those parameters through smart phone application or website.\n Smart microcontroller was installed in wellhead panel and three sensors are mounted in desired point around wellhead to perform online Intelligent Well Monitoring (IWM) for well’s parameters. If abnormality occurs, real time notification would be sent to user’s smart phone application or website by using global mobile communication system (GSM) signal. The parameters monitored were pressure, temperature, and load because they are essential to be analyzed as initial diagnosis of well problem. Based on the readings, production team could quickly perform troubleshooting to prevent loss production opportunity (LPO). The programming of this smart microcontroller used C language as data compiler.\n This method was tested in one of the wells in Lindai field, which has the highest oil production. After three months of surveillance, in terms of data quality, the values shown by this tool had only five percent differences compared to manual survey using calibrated measurement tools. Additionally, the parameters could be monitored online, real time, and gave the notification directly to users should there be any issues. Moreover, this tool could reduce the response time of the field crew significantly from six hours following the conventional field tour to only in five minutes by relying on real time notification. In addition, the operational cost of this tool was 82% cheaper compared to other well-known online monitoring tool available in the market so it is considered economical. In the long term, this tool will be implemented on all wells in Siak block for integrated real time monitoring. Furthermore, the impact of field scale implementation will be much greater such as increasing data accuracy by eliminating human error from manual well checking and improving safety of the crew by reducing the possibility of fatigue.\n The utilization of smart microcontroller for online well monitoring is beneficial for marginal field with high number of wells and wide field coverage. Earlier, real time well monitoring is usually considered expensive investment that rarely become priority. However, the implementation of IoT (Internet of Things) by using this tool can be the game changer in marginal field and maximize the well’s production by reducing LPO.","PeriodicalId":10970,"journal":{"name":"Day 1 Tue, October 12, 2021","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 12, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205795-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, well monitoring in Siak block relied on production crew scheduled tour that needed six hours to complete one cycle of all wells in Lindai field. This paper describes the utilization of digital technology to observe well parameters while sending notification if there is any anomaly regarding those parameters through smart phone application or website.
Smart microcontroller was installed in wellhead panel and three sensors are mounted in desired point around wellhead to perform online Intelligent Well Monitoring (IWM) for well’s parameters. If abnormality occurs, real time notification would be sent to user’s smart phone application or website by using global mobile communication system (GSM) signal. The parameters monitored were pressure, temperature, and load because they are essential to be analyzed as initial diagnosis of well problem. Based on the readings, production team could quickly perform troubleshooting to prevent loss production opportunity (LPO). The programming of this smart microcontroller used C language as data compiler.
This method was tested in one of the wells in Lindai field, which has the highest oil production. After three months of surveillance, in terms of data quality, the values shown by this tool had only five percent differences compared to manual survey using calibrated measurement tools. Additionally, the parameters could be monitored online, real time, and gave the notification directly to users should there be any issues. Moreover, this tool could reduce the response time of the field crew significantly from six hours following the conventional field tour to only in five minutes by relying on real time notification. In addition, the operational cost of this tool was 82% cheaper compared to other well-known online monitoring tool available in the market so it is considered economical. In the long term, this tool will be implemented on all wells in Siak block for integrated real time monitoring. Furthermore, the impact of field scale implementation will be much greater such as increasing data accuracy by eliminating human error from manual well checking and improving safety of the crew by reducing the possibility of fatigue.
The utilization of smart microcontroller for online well monitoring is beneficial for marginal field with high number of wells and wide field coverage. Earlier, real time well monitoring is usually considered expensive investment that rarely become priority. However, the implementation of IoT (Internet of Things) by using this tool can be the game changer in marginal field and maximize the well’s production by reducing LPO.