Online tuned neural networks for PV plant production forecasting

L. Ciabattoni, M. Grisostomi, G. Ippoliti, S. Longhi, E. Mainardi
{"title":"Online tuned neural networks for PV plant production forecasting","authors":"L. Ciabattoni, M. Grisostomi, G. Ippoliti, S. Longhi, E. Mainardi","doi":"10.1109/PVSC.2012.6318197","DOIUrl":null,"url":null,"abstract":"The paper deals with the forecast of the power production for three different PhotoVoltaic (PV) plants using an on-line self learning prediction algorithm. The plants are located in Italy at different latitudes. This learning algorithm is based on a radial basis function (RBF) network and combines the growing criterion and the pruning strategy of the minimal resource allocating network technique. Its on-line learning mechanism gives the chance to avoid the initial training of the NN with a large data set. The performances of the algorithm are tested on the three PV plants with different peak power, panel's materials, orientation and tilting angle. Results are compared to a classical RBF neural network.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"96 1","pages":"002916-002921"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6318197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The paper deals with the forecast of the power production for three different PhotoVoltaic (PV) plants using an on-line self learning prediction algorithm. The plants are located in Italy at different latitudes. This learning algorithm is based on a radial basis function (RBF) network and combines the growing criterion and the pruning strategy of the minimal resource allocating network technique. Its on-line learning mechanism gives the chance to avoid the initial training of the NN with a large data set. The performances of the algorithm are tested on the three PV plants with different peak power, panel's materials, orientation and tilting angle. Results are compared to a classical RBF neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光伏电站产量预测的在线调谐神经网络
本文利用在线自学习预测算法对三种不同光伏电站的发电量进行了预测。这些植物分布在意大利不同的纬度。该学习算法基于径向基函数(RBF)网络,结合了最小资源分配网络技术的生长准则和剪枝策略。它的在线学习机制避免了神经网络的初始训练需要大量的数据集。在三个不同峰值功率、面板材料、朝向和倾斜角度的光伏电站上测试了算法的性能。结果与经典RBF神经网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Lightweight PV module design for Building Integrated Photovoltaics Advances in silicon surface texturization by metal assisted chemical etching for photovoltaic applications Inverse Metamorphic III-V/epi-SiGe Tandem Solar Cell Performance Assessed by Optical and Electrical Modeling Enabling High-Efficiency InAs/GaAs Quantum Dot Solar Cells by Epitaxial Lift-Off and Light Management An autocorrelation-based copula model for producing realistic clear-sky index and photovoltaic power generation time-series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1