Indoor data management

Hua Lu, M. A. Cheema
{"title":"Indoor data management","authors":"Hua Lu, M. A. Cheema","doi":"10.1109/ICDE.2016.7498358","DOIUrl":null,"url":null,"abstract":"A large part of modern life is lived indoors such as in homes, offices, shopping malls, universities, libraries and airports. However, almost all of the existing location-based services (LBS) have been designed only for outdoor space. This is mainly because the global positioning system (GPS) and other positioning technologies cannot accurately identify the locations in indoor venues. Some recent initiatives have started to cross this technical barrier, promising huge future opportunities for research organizations, government agencies, technology giants, and enterprizing start-ups - to exploit the potential of indoor LBS. Consequently, indoor data management has gained significant research attention in the past few years and the research interest is expected to surge in the upcoming years. This will result in a broad range of indoor applications including emergency services, public services, in-store advertising, shopping, tracking, guided tours, and much more. In this tutorial, we first highlight the importance of indoor data management and the unique challenges that need to be addressed. Subsequently, we provide an overview of the existing research in indoor data management, covering modeling, cleansing, indexing, querying, and other relevant topics. Finally, we discuss the future research directions in this important and growing research area, discussing spatial-textual search, integrating outdoor and indoor spaces, uncertain indoor data, and indoor trajectory mining.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"53 1","pages":"1414-1417"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A large part of modern life is lived indoors such as in homes, offices, shopping malls, universities, libraries and airports. However, almost all of the existing location-based services (LBS) have been designed only for outdoor space. This is mainly because the global positioning system (GPS) and other positioning technologies cannot accurately identify the locations in indoor venues. Some recent initiatives have started to cross this technical barrier, promising huge future opportunities for research organizations, government agencies, technology giants, and enterprizing start-ups - to exploit the potential of indoor LBS. Consequently, indoor data management has gained significant research attention in the past few years and the research interest is expected to surge in the upcoming years. This will result in a broad range of indoor applications including emergency services, public services, in-store advertising, shopping, tracking, guided tours, and much more. In this tutorial, we first highlight the importance of indoor data management and the unique challenges that need to be addressed. Subsequently, we provide an overview of the existing research in indoor data management, covering modeling, cleansing, indexing, querying, and other relevant topics. Finally, we discuss the future research directions in this important and growing research area, discussing spatial-textual search, integrating outdoor and indoor spaces, uncertain indoor data, and indoor trajectory mining.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室内数据管理
现代生活的很大一部分是在室内进行的,比如在家里、办公室、购物中心、大学、图书馆和机场。然而,几乎所有现有的基于位置的服务(LBS)都只是为户外空间设计的。这主要是因为全球定位系统(GPS)和其他定位技术无法准确识别室内场地的位置。最近的一些举措已经开始跨越这一技术障碍,为研究机构、政府机构、科技巨头和创业型初创企业提供了巨大的未来机会——利用室内LBS的潜力。因此,室内数据管理在过去几年中获得了重要的研究关注,预计未来几年的研究兴趣将激增。这将导致广泛的室内应用,包括应急服务、公共服务、店内广告、购物、跟踪、导游等等。在本教程中,我们首先强调室内数据管理的重要性和需要解决的独特挑战。随后,我们概述了室内数据管理的现有研究,包括建模、清理、索引、查询和其他相关主题。最后,我们讨论了这一重要且不断发展的研究领域的未来研究方向,包括空间文本搜索、室内外空间集成、不确定室内数据和室内轨迹挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1