A Review on CO2 Absorption using Chemical Solvents at Low and High CO2 Partial Pressure Conditions in a Packed Column

H. Halim, V. Rajiman, A. Shariff
{"title":"A Review on CO2 Absorption using Chemical Solvents at Low and High CO2 Partial Pressure Conditions in a Packed Column","authors":"H. Halim, V. Rajiman, A. Shariff","doi":"10.2174/18741231-v16-e2204140","DOIUrl":null,"url":null,"abstract":"CO2 removal is important for industrial flue gas treatment, biogas enhancement, and natural gas (NG) processing applications. Chemical absorption using an amine-based solvent is a proven technology for CO2 removal from various gases. In recent years, various promising amine solvents have been investigated, either as single or blended solutions, to enhance the CO2 absorption process at low and high CO2 partial pressure conditions. Low CO2 partial pressures (1 – 47 kPa) have been utilized in numerous research works focusing on flue gas treatment and biogas enhancement applications. On the other hand, high CO2 partial pressures were instead applied in NG processing ranging between 750 and 1600 kPa. To provide more insight into the current trends, existing research on CO2 absorption in amine-based solvents is presented in this review focusing on absorption performance in a packed column at low and high CO2 partial pressures. Reports on the effect of different parameters, namely CO2 partial pressure, gas, and liquid flow rates, amine concentrations, and liquid temperature, on the removal of CO2 in the packed column are included. Based on the review, the future direction is further highlighted in this area.","PeriodicalId":22933,"journal":{"name":"The Open Chemical Engineering Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/18741231-v16-e2204140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 removal is important for industrial flue gas treatment, biogas enhancement, and natural gas (NG) processing applications. Chemical absorption using an amine-based solvent is a proven technology for CO2 removal from various gases. In recent years, various promising amine solvents have been investigated, either as single or blended solutions, to enhance the CO2 absorption process at low and high CO2 partial pressure conditions. Low CO2 partial pressures (1 – 47 kPa) have been utilized in numerous research works focusing on flue gas treatment and biogas enhancement applications. On the other hand, high CO2 partial pressures were instead applied in NG processing ranging between 750 and 1600 kPa. To provide more insight into the current trends, existing research on CO2 absorption in amine-based solvents is presented in this review focusing on absorption performance in a packed column at low and high CO2 partial pressures. Reports on the effect of different parameters, namely CO2 partial pressure, gas, and liquid flow rates, amine concentrations, and liquid temperature, on the removal of CO2 in the packed column are included. Based on the review, the future direction is further highlighted in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
填料塔中低、高CO2分压条件下化学溶剂吸收CO2的研究进展
CO2去除对于工业烟气处理、沼气强化和天然气处理应用具有重要意义。使用胺基溶剂的化学吸收是一种经过验证的从各种气体中去除二氧化碳的技术。近年来,人们研究了各种有前途的胺类溶剂,无论是作为单一溶液还是混合溶液,以增强低和高CO2分压条件下的CO2吸收过程。低二氧化碳分压(1 - 47千帕)已被用于许多侧重于烟气处理和沼气强化应用的研究工作。另一方面,高CO2分压被应用于NG加工,范围在750和1600千帕之间。为了更深入地了解当前的趋势,本文综述了胺基溶剂中CO2吸收的现有研究,重点介绍了填料柱在低和高CO2分压下的吸收性能。报告了不同的参数,即CO2分压、气体和液体流速、胺浓度和液体温度,对填料柱中CO2的去除的影响。在回顾的基础上,进一步强调了该领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulation of Fat Content in Triticale Based on Optimization of Technological Processing Modes Microrespirometric Validation of a Two-stage Process for Polyhydroxyalkanoates Production from Peanut Oil and Propionate with Cupriavidus necator The Analytical Scheme on the Inertial Drag for Buoyancy-driven Nanofluid Flow Under Convective Thermal Surface with the Soret Effect Developing a CDY Model for Grapes and Experimentally Validating it with an Android App that Focuses on Agro-climatic and Disease Prevention Aspects Mechanical and Structural Properties of Epoxy Resin-Allyl Guar Gum Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1