{"title":"Research progress of electromagnetic properties of tunable chiral metasurfaces","authors":"Wang Jinjin, Zhu Qiuhao, Dong Jian-feng","doi":"10.12086/OEE.2021.200218","DOIUrl":null,"url":null,"abstract":"Chiral metasurfaces are ultra-thin metamaterials composed of planar chiral cell structures with specific electromagnetic responses. They have attracted great attention due to their singular ability to control electromagnetic waves at will. With tunable materials incorporated into the metasurfaces design, one can realize tunable/reconfigurable metadevices with functionalities controlled by external stimuli, opening a new platform to dynamically manipulate electromagnetic waves. In this paper, we introduce some theoretical foundations of the electromagnetic properties of tunable/reconfigurable chiral metasurfaces. When a linearly polarized light enters a tunable chiral metasurface, it can be decomposed into left-handed circularly polarized (LCP) wave and right-handed circularly polarized (RCP) wave. By changing the dielectric constant and magnetic permeability of the medium through the external environment, the metadevices can dynamically control the response characteristics to various polarized lights, especially circularly polarized lights such as refractive index, dichroism, optical rotation, asymmetric transmission, etc. According to the properties of negative refractive index, circular dichroism, optical rotation, and asymmetric transmission controlled by the tunable chiral metasurfaces, we review the latest research progress. Finally, we put forward our own opinions on the possible future development directions and existing challenges of the rapidly developing field of the tunable chiral metasurface.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"31 1","pages":"200218"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral metasurfaces are ultra-thin metamaterials composed of planar chiral cell structures with specific electromagnetic responses. They have attracted great attention due to their singular ability to control electromagnetic waves at will. With tunable materials incorporated into the metasurfaces design, one can realize tunable/reconfigurable metadevices with functionalities controlled by external stimuli, opening a new platform to dynamically manipulate electromagnetic waves. In this paper, we introduce some theoretical foundations of the electromagnetic properties of tunable/reconfigurable chiral metasurfaces. When a linearly polarized light enters a tunable chiral metasurface, it can be decomposed into left-handed circularly polarized (LCP) wave and right-handed circularly polarized (RCP) wave. By changing the dielectric constant and magnetic permeability of the medium through the external environment, the metadevices can dynamically control the response characteristics to various polarized lights, especially circularly polarized lights such as refractive index, dichroism, optical rotation, asymmetric transmission, etc. According to the properties of negative refractive index, circular dichroism, optical rotation, and asymmetric transmission controlled by the tunable chiral metasurfaces, we review the latest research progress. Finally, we put forward our own opinions on the possible future development directions and existing challenges of the rapidly developing field of the tunable chiral metasurface.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing