AN OVERVIEW OF ELECTRICALLY CONDUCTING TEXTILES

Savitha Ku, Kavitha Al, R. M
{"title":"AN OVERVIEW OF ELECTRICALLY CONDUCTING TEXTILES","authors":"Savitha Ku, Kavitha Al, R. M","doi":"10.55218/jasr.2023140302","DOIUrl":null,"url":null,"abstract":"Textiles are having evolution from being normal protective clothing to smart and technical textiles. Electrically conducting fabrics forms the backbone of being smart textiles. The smart textile combines electronics with textile structures, referred to as “textronics”. One major challenge to the success of such wearable smart textile resides in the development of lightweight and flexible components, and fibrous structures with high electrical conductivity able to withstand the stresses associated with wearing and caring for the textile. Therefore, flexible, deformable, stretchable, and durable conductive textile materials are needed for durable smart fabrics that capture and convey information and enable computing while accommodating the drape and movement of the human body. In recent decades, numerous approaches have been made in research to address this challenge using the flexibility and versatility of textile structures, along with innovations in the field of particulate and fibrous materials. This review focuses on the methods of synthesis of electrically conducting textiles and their applications. Particularly, it summarizes textile based multi-functional devices and their potential applications for portable or wearable functional integrated electronics, energy conversion & storage devices, sensors and actuators. The methods of fabrication like incorporation of conducting polymers are briefly discussed.","PeriodicalId":14906,"journal":{"name":"Journal of Advanced Scientific Research","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55218/jasr.2023140302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Textiles are having evolution from being normal protective clothing to smart and technical textiles. Electrically conducting fabrics forms the backbone of being smart textiles. The smart textile combines electronics with textile structures, referred to as “textronics”. One major challenge to the success of such wearable smart textile resides in the development of lightweight and flexible components, and fibrous structures with high electrical conductivity able to withstand the stresses associated with wearing and caring for the textile. Therefore, flexible, deformable, stretchable, and durable conductive textile materials are needed for durable smart fabrics that capture and convey information and enable computing while accommodating the drape and movement of the human body. In recent decades, numerous approaches have been made in research to address this challenge using the flexibility and versatility of textile structures, along with innovations in the field of particulate and fibrous materials. This review focuses on the methods of synthesis of electrically conducting textiles and their applications. Particularly, it summarizes textile based multi-functional devices and their potential applications for portable or wearable functional integrated electronics, energy conversion & storage devices, sensors and actuators. The methods of fabrication like incorporation of conducting polymers are briefly discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导电性纺织品概述
纺织品正在从普通的防护服装向智能技术纺织品发展。导电织物是智能纺织品的支柱。智能纺织品结合了电子和纺织结构,被称为“textronics”。这种可穿戴智能纺织品成功的一个主要挑战在于开发轻质和柔性部件,以及具有高导电性的纤维结构,能够承受与穿着和护理纺织品相关的应力。因此,需要柔性、可变形、可拉伸、耐用的导电纺织材料,以实现在适应人体悬垂和运动的同时捕获和传递信息并实现计算的耐用智能织物。近几十年来,研究人员利用纺织结构的灵活性和多功能性,以及颗粒和纤维材料领域的创新,提出了许多方法来解决这一挑战。本文综述了导电纺织品的合成方法及其应用。重点综述了基于纺织品的多功能器件及其在便携式或可穿戴的功能集成电子、能量转换和放大器等方面的潜在应用。存储设备、传感器和执行器。简要讨论了导电聚合物掺入等制造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Coronary Stents: With Polymers and without Polymers Evaluation of Neuroprotective effect of Bioactive compounds of Mucuna monosperma in PD lines of Drosophila melanogaster Formulation and Evaluation of Polyherbal Antidiabetic Capsules Contribution of Unani Physicians in Tashrīḥ al-Raḥim (Anatomy of the Uterus): A Systematic Review Isolation and Characterization of Rhizobacteria from Soil and Its Efficiency as Plant Growth- Promoting Microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1