Assembly-Induced Stress and Its Effect on the Integrity of Assembly System in Drop Simulation

W. Ren, Jianjun Wang
{"title":"Assembly-Induced Stress and Its Effect on the Integrity of Assembly System in Drop Simulation","authors":"W. Ren, Jianjun Wang","doi":"10.1109/ESIME.2006.1643977","DOIUrl":null,"url":null,"abstract":"In this paper, a drop vehicle of LCD system was selected to address the assembly-induced stress and its effect on the integrity of assembly system in drop simulation. A finite element procedure was implemented to analyze a two-step loaded LCD system in terms of ABAQUS/Standard and ABAQUS/Explicit tools. Firstly, the LCD is statically loaded by the pretension of the screws and the pressure of the elastomer to determine the stress/strain equilibrium by using the ABAQUS/Standard tool. Secondly, the pre-stressed LCD system is loaded by dropping it from one and half meters high onto a hard floor to assess its reliability under impact loading by means of the ABAQUS/Explicit tool. From the finite element analysis, it is found that the maximum stress level obtained from a model without assembly-induced pre-stressing is generally smaller than that obtained from a model with assembly-induced pre-stressing. In addition, the effect of the ratio of the pressed thickness of the elastomer to the non-pressed thickness of the elastomer on the LCD reliability was investigated based on the proposed procedure. An optimized ratio was recommended","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"6 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a drop vehicle of LCD system was selected to address the assembly-induced stress and its effect on the integrity of assembly system in drop simulation. A finite element procedure was implemented to analyze a two-step loaded LCD system in terms of ABAQUS/Standard and ABAQUS/Explicit tools. Firstly, the LCD is statically loaded by the pretension of the screws and the pressure of the elastomer to determine the stress/strain equilibrium by using the ABAQUS/Standard tool. Secondly, the pre-stressed LCD system is loaded by dropping it from one and half meters high onto a hard floor to assess its reliability under impact loading by means of the ABAQUS/Explicit tool. From the finite element analysis, it is found that the maximum stress level obtained from a model without assembly-induced pre-stressing is generally smaller than that obtained from a model with assembly-induced pre-stressing. In addition, the effect of the ratio of the pressed thickness of the elastomer to the non-pressed thickness of the elastomer on the LCD reliability was investigated based on the proposed procedure. An optimized ratio was recommended
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跌落仿真中装配诱导应力及其对装配系统完整性的影响
本文选取LCD系统的跌落车辆进行跌落仿真,以解决跌落仿真中装配诱导应力及其对装配系统完整性的影响。采用ABAQUS/Standard和ABAQUS/Explicit两种工具对两步加载LCD系统进行了有限元分析。首先,利用ABAQUS/Standard工具,通过螺杆预拉力和弹性体压力对LCD进行静态加载,确定其应力/应变平衡。其次,通过ABAQUS/Explicit工具,将预应力液晶显示系统从1.5米高的地方跌落到坚硬的地板上进行加载,以评估其在冲击载荷下的可靠性。从有限元分析中发现,无装配诱导预应力模型得到的最大应力水平一般小于有装配诱导预应力模型得到的最大应力水平。此外,还研究了弹性体受压厚度与非受压厚度之比对液晶显示可靠性的影响。提出了最佳配比
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
145
期刊最新文献
Front Matter: Volume 12072 Front Matter: Volume 12073 Multi-Energy Domain Modeling of Microdevices: Virtual Prototyping by Predictive Simulation A Monte Carlo Investigation of Nanocrystal Memory Reliability Difficulties on the estimation of the thermal structure function from noisy thermal impedance transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1