Akio Higo Member, C. Thomas, T. Kiba, J. Takayama, I. Yamashita, A. Murayama, S. Samukawa
{"title":"The effect of asymmetric barriers of GaAs quantum nanodisks light emitting diode","authors":"Akio Higo Member, C. Thomas, T. Kiba, J. Takayama, I. Yamashita, A. Murayama, S. Samukawa","doi":"10.1109/NANO.2016.7751303","DOIUrl":null,"url":null,"abstract":"Quantum dots optoelectronic devices such as laser diodes, light emitting diodes (LED), high-speed modulators, semiconductor optical amplifiers are much attention because of their low power consumption and temperature stability. We have developed a defect-less top-down dry process for 15-nm in-diameter and 8-nm in thickness GaAs quantum nanodisks (QNDs) LEDs by a bio-template, neutral beam etching and asymmetric AlGaAs/GaAs regrown by metalorganic vapor phase epitaxy (MOVPE). To operate at room temperature, different aluminum contents barrier matrix were used for deep band energy offset between GaAs QNDs and AlGaAs barriers. Their temperature dependence of optical properties measured by electroluminescence (E-L) characteristics. We confirmed that energies and the transient behavior of the E-L characteristics as various temperature are strongly affected by the band offset energies, therefore, QND LEDs with different aluminum contents barriers has successfully operated by top-down fusion dry process at room temperature.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"90 1","pages":"45-46"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots optoelectronic devices such as laser diodes, light emitting diodes (LED), high-speed modulators, semiconductor optical amplifiers are much attention because of their low power consumption and temperature stability. We have developed a defect-less top-down dry process for 15-nm in-diameter and 8-nm in thickness GaAs quantum nanodisks (QNDs) LEDs by a bio-template, neutral beam etching and asymmetric AlGaAs/GaAs regrown by metalorganic vapor phase epitaxy (MOVPE). To operate at room temperature, different aluminum contents barrier matrix were used for deep band energy offset between GaAs QNDs and AlGaAs barriers. Their temperature dependence of optical properties measured by electroluminescence (E-L) characteristics. We confirmed that energies and the transient behavior of the E-L characteristics as various temperature are strongly affected by the band offset energies, therefore, QND LEDs with different aluminum contents barriers has successfully operated by top-down fusion dry process at room temperature.