Experimental Analysis of the Dew Point Indirect Evaporative Cooler Operating with Solar Panels

Sabir Rasheed, Muzaffar Ali, Hassan Ali, N. Sheikh
{"title":"Experimental Analysis of the Dew Point Indirect Evaporative Cooler Operating with Solar Panels","authors":"Sabir Rasheed, Muzaffar Ali, Hassan Ali, N. Sheikh","doi":"10.3390/engproc2021012090","DOIUrl":null,"url":null,"abstract":"Indirect evaporative cooling can meaningfully improve the natural environment. It involves low operating costs for air cooling systems. The dew point indirect evaporative cooler (DP-IEC) is energy-efficient, ecological, and economical. The current study reports on an experimental analysis of a DP-IEC working under a wide range of operating conditions and integrated with a solar panel system. The electricity consumption of the DP-IEC can be met by utilizing renewable energy technology (solar panels). The system is designed for a cooling capacity of up to 3 kW, with an energy efficiency ratio of about 20. The experimental setup is investigated here in terms of velocity, water temperature, ambient air temperature, and air humidity. The temperature is dropped from 43 °C to 23 °C (i.e., 20 °C temperature drop) at 20% humidity and from 49 °C to 24 °C (i.e., 25 °C temperature drop) at 13% humidity at a fixed air velocity and water temperature. The cooling capacity, coefficient of performance, and energy efficiency ratio values vary across the ranges of 1612–3215 W, 2.93–5.85, and 9.21–18.37, respectively. The DP-IEC is integrated with solar panels to offset the electricity consumption. This research work also shows that the DP-IEC, when integrated with renewable energy technology (i.e., solar panels), provides energy savings as compared with air conditioners. As such, it is suitable for use in several areas around the world.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Indirect evaporative cooling can meaningfully improve the natural environment. It involves low operating costs for air cooling systems. The dew point indirect evaporative cooler (DP-IEC) is energy-efficient, ecological, and economical. The current study reports on an experimental analysis of a DP-IEC working under a wide range of operating conditions and integrated with a solar panel system. The electricity consumption of the DP-IEC can be met by utilizing renewable energy technology (solar panels). The system is designed for a cooling capacity of up to 3 kW, with an energy efficiency ratio of about 20. The experimental setup is investigated here in terms of velocity, water temperature, ambient air temperature, and air humidity. The temperature is dropped from 43 °C to 23 °C (i.e., 20 °C temperature drop) at 20% humidity and from 49 °C to 24 °C (i.e., 25 °C temperature drop) at 13% humidity at a fixed air velocity and water temperature. The cooling capacity, coefficient of performance, and energy efficiency ratio values vary across the ranges of 1612–3215 W, 2.93–5.85, and 9.21–18.37, respectively. The DP-IEC is integrated with solar panels to offset the electricity consumption. This research work also shows that the DP-IEC, when integrated with renewable energy technology (i.e., solar panels), provides energy savings as compared with air conditioners. As such, it is suitable for use in several areas around the world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
露点间接蒸发冷却器太阳能板运行的实验分析
间接蒸发冷却对改善自然环境具有重要意义。它涉及到空气冷却系统的低运行成本。露点间接蒸发冷却器(DP-IEC)具有节能、环保、经济的特点。目前的研究报告了DP-IEC在广泛的操作条件下工作并与太阳能电池板系统集成的实验分析。DP-IEC的电力消耗可以通过利用可再生能源技术(太阳能电池板)来满足。该系统的制冷量可达3kw,能效比约为20。实验装置在流速、水温、环境空气温度和空气湿度方面进行了研究。湿度为20%时,温度从43℃降至23℃(即降20℃);湿度为13%时,温度从49℃降至24℃(即降25℃)。制冷量、性能系数和能效比分别为1612 ~ 3215 W、2.93 ~ 5.85和9.21 ~ 18.37。DP-IEC集成了太阳能电池板,以抵消电力消耗。这项研究工作还表明,与空调相比,DP-IEC与可再生能源技术(即太阳能电池板)结合使用时可以节省能源。因此,它适合在世界各地的几个地区使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition Location-Assistive and Real-Time Query IoT-Based Transport System The Thermal Analysis of a Sensible Heat Thermal Energy Storage System Using Circular-Shaped Slag and Concrete for Medium- to High-Temperature Applications Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition Solar Powered DC Refrigerator for Small Scale Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1