A Model for the Prediction of Tobacco Temperature and Oxygen Profiles in Warehouse Aging Process

Y. Zheng, J. Chipley, A. Dow, C. Midgett
{"title":"A Model for the Prediction of Tobacco Temperature and Oxygen Profiles in Warehouse Aging Process","authors":"Y. Zheng, J. Chipley, A. Dow, C. Midgett","doi":"10.2478/CTTR-2013-0842","DOIUrl":null,"url":null,"abstract":"Abstract A mathematical model on the temperature and oxygen profiles for the tobacco warehouse aging process was formulated and solved by numeric analysis. The model parameters were obtained using the non-linear regression method by fitting several years measured temperatures to the model. The R square value between measured and calculated tobacco temperatures in warehouse aging process are all over 0.95. The proposed model can be used to predict the tobacco hogshead temperature profile at different time and positions with ambient temperature, tobacco moisture contents and pH. At the same time, the model also predicts the oxygen profile in the hogshead. The effects of the ambient temperature, pH, void fraction, the reaction active energy, oxygen diffusivity, and the oxygen consumption rate constant on the temperature profile were studied.","PeriodicalId":10723,"journal":{"name":"Contributions to Tobacco & Nicotine Research","volume":"51 1","pages":"358 - 364"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Tobacco & Nicotine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/CTTR-2013-0842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract A mathematical model on the temperature and oxygen profiles for the tobacco warehouse aging process was formulated and solved by numeric analysis. The model parameters were obtained using the non-linear regression method by fitting several years measured temperatures to the model. The R square value between measured and calculated tobacco temperatures in warehouse aging process are all over 0.95. The proposed model can be used to predict the tobacco hogshead temperature profile at different time and positions with ambient temperature, tobacco moisture contents and pH. At the same time, the model also predicts the oxygen profile in the hogshead. The effects of the ambient temperature, pH, void fraction, the reaction active energy, oxygen diffusivity, and the oxygen consumption rate constant on the temperature profile were studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仓库陈化过程中烟草温度和氧分布的预测模型
摘要建立了烟叶仓库陈化过程的温度和氧分布数学模型,并采用数值分析方法进行了求解。模型参数采用非线性回归方法,通过对多年实测温度的拟合得到。烟叶仓库陈化过程中实测值与计算值的R平方值均大于0.95。该模型可用于预测烟叶在不同时间和位置随环境温度、烟叶含水量和ph值变化的烟叶烟叶温度分布,同时还可预测烟叶烟叶烟叶中氧分布。考察了环境温度、pH、空穴分数、反应活化能、氧扩散系数和耗氧速率常数对反应温度分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative In Vitro Toxicological Screening of a Closed-End Heated Tobacco Product * Plasma Nicotine Pharmacokinetics of Oral Nicotine Pouches Across Varying Flavours and Nicotine Content * A Pumping Method for Assessing Airtightness of Packs - Application to Heated Tobacco Products * Purchase Intent and Product Appeal of Velo Nicotine Pouches Among Current Tobacco Users and Nonusers of Tobacco How do Risk Perceptions Drive Smokers to Completely Switch to a Smoke-Free Tobacco Product (IQOS™)? A Four-Country Cohort Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1