Multi-class Multi-annotator Active Learning with Robust Gaussian Process for Visual Recognition

Chengjiang Long, G. Hua
{"title":"Multi-class Multi-annotator Active Learning with Robust Gaussian Process for Visual Recognition","authors":"Chengjiang Long, G. Hua","doi":"10.1109/ICCV.2015.325","DOIUrl":null,"url":null,"abstract":"Active learning is an effective way to relieve the tedious work of manual annotation in many applications of visual recognition. However, less research attention has been focused on multi-class active learning. In this paper, we propose a novel Gaussian process classifier model with multiple annotators for multi-class visual recognition. Expectation propagation (EP) is adopted for efficient approximate Bayesian inference of our probabilistic model for classification. Based on the EP approximation inference, a generalized Expectation Maximization (GEM) algorithm is derived to estimate both the parameters for instances and the quality of each individual annotator. Also, we incorporate the idea of reinforcement learning to actively select both the informative samples and the high-quality annotators, which better explores the trade-off between exploitation and exploration. The experiments clearly demonstrate the efficacy of the proposed model.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"2839-2847"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

Active learning is an effective way to relieve the tedious work of manual annotation in many applications of visual recognition. However, less research attention has been focused on multi-class active learning. In this paper, we propose a novel Gaussian process classifier model with multiple annotators for multi-class visual recognition. Expectation propagation (EP) is adopted for efficient approximate Bayesian inference of our probabilistic model for classification. Based on the EP approximation inference, a generalized Expectation Maximization (GEM) algorithm is derived to estimate both the parameters for instances and the quality of each individual annotator. Also, we incorporate the idea of reinforcement learning to actively select both the informative samples and the high-quality annotators, which better explores the trade-off between exploitation and exploration. The experiments clearly demonstrate the efficacy of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鲁棒高斯过程的多类多标注器主动学习视觉识别
在视觉识别的许多应用中,主动学习是一种有效的方法,可以减轻手工标注的繁琐工作。然而,对多班级主动学习的研究较少。本文提出了一种具有多标注器的高斯过程分类器模型,用于多类视觉识别。采用期望传播(EP)对分类概率模型进行有效的近似贝叶斯推理。在EP近似推理的基础上,推导出一种广义期望最大化(GEM)算法来估计实例的参数和每个注释器的质量。此外,我们还结合了强化学习的思想来主动选择信息丰富的样本和高质量的注释器,从而更好地探索了开发和探索之间的权衡。实验清楚地证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1