Multi class boosted random ferns for adapting a generic object detector to a specific video

Pramod Sharma, R. Nevatia
{"title":"Multi class boosted random ferns for adapting a generic object detector to a specific video","authors":"Pramod Sharma, R. Nevatia","doi":"10.1109/WACV.2014.6836028","DOIUrl":null,"url":null,"abstract":"Detector adaptation is a challenging problem and several methods have been proposed in recent years. We propose multi class boosted random ferns for detector adaptation. First we collect online samples in an unsupervised manner and collected positive online samples are divided into different categories for different poses of the object. Then we train a multi-class boosted random fern adaptive classifier. Our adaptive classifier training focuses on two aspects: discriminability and efficiency. Boosting provides discriminative random ferns. For efficiency, our boosting procedure focuses on sharing the same feature among different classes and multiple strong classifiers are trained in a single boosting framework. Experiments on challenging public datasets demonstrate effectiveness of our approach.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"33 1","pages":"745-752"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Detector adaptation is a challenging problem and several methods have been proposed in recent years. We propose multi class boosted random ferns for detector adaptation. First we collect online samples in an unsupervised manner and collected positive online samples are divided into different categories for different poses of the object. Then we train a multi-class boosted random fern adaptive classifier. Our adaptive classifier training focuses on two aspects: discriminability and efficiency. Boosting provides discriminative random ferns. For efficiency, our boosting procedure focuses on sharing the same feature among different classes and multiple strong classifiers are trained in a single boosting framework. Experiments on challenging public datasets demonstrate effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类增强随机蕨类植物适应一个通用的对象检测器到一个特定的视频
检测器自适应是一个具有挑战性的问题,近年来提出了几种方法。我们提出了多类增强随机蕨类植物来适应检测器。首先采用无监督的方式采集在线样本,采集到的在线阳性样本根据物体的不同姿态进行分类。然后我们训练了一个多类增强随机蕨类自适应分类器。我们的自适应分类器训练主要集中在两个方面:可判别性和效率。增强提供了判别随机蕨类。为了提高效率,我们的增强过程侧重于在不同的类之间共享相同的特征,并且在单个增强框架中训练多个强分类器。在具有挑战性的公共数据集上的实验证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1