Sarvin Rezayat, Christopher Kappelmann, Zachary Hays, Lucilia Hays, C. Baylis, E. Viveiros, A. Semnani, D. Peroulis
{"title":"Real-Time Frequency-Agile $\\mathrm{Circuit}$ Reconfiguration for S-Band Radar Using a High-Power Tunable Resonant Cavity Matching Network","authors":"Sarvin Rezayat, Christopher Kappelmann, Zachary Hays, Lucilia Hays, C. Baylis, E. Viveiros, A. Semnani, D. Peroulis","doi":"10.1109/MWSYM.2018.8439251","DOIUrl":null,"url":null,"abstract":"In the dynamic spectrum access paradigm, operating frequency and bandwidth are assigned in real time. Presently the S-band radar allocation is highly coveted for spectrum sharing with wireless communications. To share the band with wireless systems, next-generation radar transmitters must be able to reconfigure in both frequency and spectrum usage in real time. We demonstrate S-band reconfigurability of a high-power tunable evanescent-mode cavity matching network capable of 90 $\\mathrm{w}$ of RF power handling. The system can switch between different operating frequencies, optimizing its power-added efficiency (PAE) while meeting simultaneous adjacent-channel power ratio (ACPR) constraints. This reconfiguration capability provides a useful building block for dynamic coexistence of a radar transmitter with other wireless systems in the S band.","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"58 1","pages":"915-918"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the dynamic spectrum access paradigm, operating frequency and bandwidth are assigned in real time. Presently the S-band radar allocation is highly coveted for spectrum sharing with wireless communications. To share the band with wireless systems, next-generation radar transmitters must be able to reconfigure in both frequency and spectrum usage in real time. We demonstrate S-band reconfigurability of a high-power tunable evanescent-mode cavity matching network capable of 90 $\mathrm{w}$ of RF power handling. The system can switch between different operating frequencies, optimizing its power-added efficiency (PAE) while meeting simultaneous adjacent-channel power ratio (ACPR) constraints. This reconfiguration capability provides a useful building block for dynamic coexistence of a radar transmitter with other wireless systems in the S band.