Yuanqing Lin, Zixuan Wu, Yaoming Wei, Yuning Liang, Kankan Zhai, K. Tao, Chunwei Li, Xi Xie, Jin Wu
{"title":"Highly Deformable and Stable Gas Sensor Based on Anti-Drying Ionic Organohydrogel for O2 Gas Detection","authors":"Yuanqing Lin, Zixuan Wu, Yaoming Wei, Yuning Liang, Kankan Zhai, K. Tao, Chunwei Li, Xi Xie, Jin Wu","doi":"10.1109/Transducers50396.2021.9495705","DOIUrl":null,"url":null,"abstract":"This paper presented a novel method to prepare organohydrogel-based stretchable O2 sensor with high performance, including good linearity, anti-drying property, low limit of detection (LOD) and long-term stability. A facile solvent replacement approach was devised to partially exchange water with xylitol molecules, generating the stable organohydrogel. Compared with gas sensor based on pristine hydrogel, this organohydrogel-based sensor displayed high water retention, leading to the prolonged life time (>30 days) therefore. In addition, LOD was lowered by 2.45 times to 0.56 ppm. Furthermore, the sensing mechanism was investigated, revealing an electrochemical reaction mechanism occurred at the electrode-hydrogel interface. This work provided a facile method for enhancing the performance of hydrogel-based gas sensor.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"20 1","pages":"799-802"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presented a novel method to prepare organohydrogel-based stretchable O2 sensor with high performance, including good linearity, anti-drying property, low limit of detection (LOD) and long-term stability. A facile solvent replacement approach was devised to partially exchange water with xylitol molecules, generating the stable organohydrogel. Compared with gas sensor based on pristine hydrogel, this organohydrogel-based sensor displayed high water retention, leading to the prolonged life time (>30 days) therefore. In addition, LOD was lowered by 2.45 times to 0.56 ppm. Furthermore, the sensing mechanism was investigated, revealing an electrochemical reaction mechanism occurred at the electrode-hydrogel interface. This work provided a facile method for enhancing the performance of hydrogel-based gas sensor.