Writing Proficiency Assessment: Regression Analysis of Item Response Theory supported by Machine Learning Techniques

W. Silva, Elias de Oliveira, M. Curi, Jean-Rémi Bourguet
{"title":"Writing Proficiency Assessment: Regression Analysis of Item Response Theory supported by Machine Learning Techniques","authors":"W. Silva, Elias de Oliveira, M. Curi, Jean-Rémi Bourguet","doi":"10.1109/CLEI53233.2021.9639903","DOIUrl":null,"url":null,"abstract":"A subject's ability to express himself demonstrates his ability to understand reality. Text production is a way to verify the proficiency of such a skill. This correlation can help in the teaching-learning process since the learning diagnosis depends on the identification of possible instructional gaps, which subsidize the composition of better teaching strategies. In this article, we present an approach to characterizing learning profiles and estimating grades in the assessment of writing tests. For that, we used item response theory and machine learning techniques in the dataset of test scores of the Exame Nacional do Ensino Médio carried out in 2019. The results show that using a portion of only 2k training instances of the 3; 7M instances and only one of the five competencies evaluated, it is possible to have a correct prediction of the skill with a p-value 0:06 and pearson correlation of 0:94. Our approach shows the benefits of employing such techniques in a real-world scenario.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"38 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9639903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A subject's ability to express himself demonstrates his ability to understand reality. Text production is a way to verify the proficiency of such a skill. This correlation can help in the teaching-learning process since the learning diagnosis depends on the identification of possible instructional gaps, which subsidize the composition of better teaching strategies. In this article, we present an approach to characterizing learning profiles and estimating grades in the assessment of writing tests. For that, we used item response theory and machine learning techniques in the dataset of test scores of the Exame Nacional do Ensino Médio carried out in 2019. The results show that using a portion of only 2k training instances of the 3; 7M instances and only one of the five competencies evaluated, it is possible to have a correct prediction of the skill with a p-value 0:06 and pearson correlation of 0:94. Our approach shows the benefits of employing such techniques in a real-world scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
写作水平评估:基于机器学习技术的项目反应理论回归分析
一个人表达自己的能力证明了他理解现实的能力。文本制作是验证这种技能熟练程度的一种方式。这种相关性有助于教学过程,因为学习诊断依赖于对可能的教学差距的识别,这有助于制定更好的教学策略。在这篇文章中,我们提出了一种在写作测试评估中表征学习概况和估计分数的方法。为此,我们将项目反应理论和机器学习技术应用于2019年全国高考的考试成绩数据集。结果表明,只使用2k训练实例的3个部分;在7万个实例中,五个能力中只有一个被评估,p值为0:06,pearson相关性为0:94,对技能的正确预测是可能的。我们的方法展示了在真实场景中使用此类技术的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Text Generation for Spanish Freestyle Battles using Neural Networks Learning factory for the Software Engineering area: First didactic transformation An Early Alert System for Software Vulnerabilities based on Vulnerability Repositories and Social Networks Data Quality Management oriented to the Electronic Medical Record Program Committees
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1