I am a legend: Hacking hearthstone using statistical learning methods

Elie Bursztein
{"title":"I am a legend: Hacking hearthstone using statistical learning methods","authors":"Elie Bursztein","doi":"10.1109/CIG.2016.7860416","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate the feasibility of a competitive player using statistical learning methods to gain an edge while playing a collectible card game (CCG) online. We showcase how our attacks work in practice against the most popular online CCG, Hearthstone: Heroes of World of Warcraft, which had over 50 million players as of April 2016. Like online poker, the large and regular cash prizes of Hearthstone's online tournaments make it a prime target for cheaters in search of a quick score. As of 2016, over $3,000,000 in prize money has been distributed in tournaments, and the best players earned over $10,000 from purely online tournaments. In this paper, we present the first algorithm that is able to learn and exploit the structure of card decks to predict with very high accuracy which cards an opponent will play in future turns. We evaluate it on real Hearthstone games and show that at its peak, between turns three and five of a game, this algorithm is able to predict the most probable future card with an accuracy above 95%. This attack was called “game breaking” by Blizzard, the creator of Hearthstone.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"74 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper, we demonstrate the feasibility of a competitive player using statistical learning methods to gain an edge while playing a collectible card game (CCG) online. We showcase how our attacks work in practice against the most popular online CCG, Hearthstone: Heroes of World of Warcraft, which had over 50 million players as of April 2016. Like online poker, the large and regular cash prizes of Hearthstone's online tournaments make it a prime target for cheaters in search of a quick score. As of 2016, over $3,000,000 in prize money has been distributed in tournaments, and the best players earned over $10,000 from purely online tournaments. In this paper, we present the first algorithm that is able to learn and exploit the structure of card decks to predict with very high accuracy which cards an opponent will play in future turns. We evaluate it on real Hearthstone games and show that at its peak, between turns three and five of a game, this algorithm is able to predict the most probable future card with an accuracy above 95%. This attack was called “game breaking” by Blizzard, the creator of Hearthstone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我是一个传奇:使用统计学习方法破解炉石传说
在本文中,我们证明了竞争玩家使用统计学习方法在玩在线收集卡牌游戏(CCG)时获得优势的可行性。我们展示了我们的攻击是如何在实践中对抗最受欢迎的在线CCG,《炉石传说:魔兽世界英雄》,截至2016年4月,该游戏拥有超过5000万玩家。与在线扑克游戏一样,《炉石传说》在线锦标赛的大额定期现金奖励使其成为寻求快速得分的作弊者的主要目标。截至2016年,锦标赛的奖金已超过300万美元,最优秀的选手从纯在线锦标赛中获得了超过1万美元的奖金。在本文中,我们提出了第一个能够学习和利用卡组结构的算法,以非常高的准确率预测对手在未来回合中将打出哪些牌。我们在真实的《炉石传说》游戏中对其进行了评估,结果显示,在游戏的第三轮和第五轮之间,该算法能够以95%以上的准确率预测未来最有可能的卡牌。这种攻击被《炉石传说》的创造者暴雪称为“破坏游戏”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1